MII—P S

TECHNOLOGIES

MIPS32™ Architecture For Programmers
Volume II: The MIPS32™ Instruction Set

Document Number: MD00086
Revision 2.00
June 9, 2003

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Copyright © 2001-2003 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) are reserved under the Copyright Laws of the United States of America.

If this document is provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format),
then its use and distribution is subject to a written agreement with MIPS Technologies, Inc. ("MIPS Technologies™). UNDER
NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD

PARTY WITHOUT THE EXPRESS WRITTEN CONSENT OF MIPS TECHNOLOGIES.

This document contains information that is proprietary to MIPS Technologies. Any copying, reproducing, modifying, ol
this information (in whole or in part) which is not expressly permitted in writing by MIPS Technologies or a
contractually-authorized third party is strictly prohibited. At a minimum, this information is protected under unfair comp
and copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information containe
document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
application or use of this information, or of any error of omission in such information. Any warranties, whether expre
statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a pat
purpose, are excluded. Any license under patent rights or any other intellectual property rights owned by MIPS Tecl
or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third party in a separate lic
agreement between the parties.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in vic
any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer software
commercial computer software documentation or other commercial items. If the user of this information, or any rela
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of tt
States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or transfer
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulatior
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The u
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or a
contract terms and conditions covering this information from MIPS Technologies or any contractually-authorized thir

MIPS®, R300, R400&, R5008 and R10008 are among the registered trademarks of MIPS Technologies, Inc. in tt
United States and certain other countries, and MIPS16™, MIPS16e™, MIPS32™, MIPS64™, MIPS-3D™, MIPS-b:
MIPS I™, MIPS [I™, MIPS lII™ MIPS IV™, MIPS V™ MDMX™, MIPSsim™, MIPSsimCA™, MIPSsimIA™,
QuickMIPS™, SmartMIPS™, MIPS Technologies logo, 4K™, 4Kc™, 4AKm™, 4Kp™, 4KE™, 4KEc™, 4KEm™, 4KE
4AKS™ 4KSc™, M4K™ B5K™ 5Kc™, 5Kf™, 20K™, 20Kc™, 25Kf™ R4300™, ASMACRO™, ATLAS™, BusBridge’
CoreFPGA™, CoreLV™, EC™, JALGO™, MALTA™, MGB™, PDtrace™, SEAD™, SEAD-2™, SOC-it™, The Pipelin
and YAMON™ are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.06Build with Conditional Tags: 2B ARCH FPU_PS FPU_PSandARC MIPS32
MIPS32™ Architecture For Programmers Volume Il, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

w wn

Table of Contents

Chapter 1 ADOUL THIS BOOKceiiiiiiiiiiee ettt e e e o444 —— £ £t 2222224111 nb bt be e 1.
1.1 Typographical Conventions
L1.1.2 TAHC TOXE..etieeeeiiiieie ettt e e s e e e e e e e
1.1.2 BOI TEXE .eeieiiiiieiee ittt .
R I 01U 1= g I =) PP PR OUP PRSPPI 1.
1.2 UNPREDICTABLE and UNDEFINEDcccciiiiiiiaiiiie ittt sttt eemmmmeemmna e
1.2.1 UNPREDICTABLE.......coiitiieiiii ettt
1.2.2 UNDERINED........ciiiitiiiiie ittt ettt sbe e nnree e
1.3 Special Symbols in Pseudocode Notation
R o Y To] (=M [0 (o1 4 F= X o o RO PO PP PP PPPPRRP PP 4.
Chapter 2 Guide 10 the INSIIUCTION SET.........uuiiiiiiiii ettt ——— 2221 n b et e e e e neee 1.
2.1 Understanding the Instruction Fields SRR 4
2.1, INSEUCHON FIEIAS ...ttt e bt e e e ekt e et e e sme e e e e eaameee s aabbneeeeaanbeeeeeeane 8.
2.1.2 Instruction Descriptive Name and MNEMONICiiiuuiiiiiiiiie ettt eee e e e e e e e bbb e mmmmmnns oo 9
P e B o 1 = L =T o PP PPP T PPPPPP P 9.
2.1.4 PUIPOSE FHEI ...ttt ettt e e ekt e e e e e e s e e b et e e e e nbre e e e e annreas 10
2.1.5 DeSCHPLON FIEIH. ... ettt e et e e s n e e e e e e aann e e e e s sbbe e e e s annnneeeean 10
2.1.6 RESIICHONS FIEIAeeiiiiiiiiii ettt st e ek emmmmmneene st e e s annnneee e s 10
2.1.7 Operation Field
2.1.8 EXCEPLIONS FIlld.....ccciiiiiiiiiiiiiie e

2.1.9 Programming Notes and Implementation Notes Fields
2.2 Operation Section Notation and Functions
2.2.1 Instruction Execution Ordering
2.2.2 PSEUAOCOUE FUNCHIONS.....cciiitiiiie ittt ettt e et e e sttt e s e st e+ e mmnnmmm s e e e e e
2.3 Op and Function Subfield Notation
2.4 FPU Instructions

Chapter 3 The MIPS32™ INSTIUCHION SLccciiiiiiiiiiieie e s e e e e e e e e e e s s s s e e e e e e e e e e smmm———— e e e e e e e s
3.1 Compliance and SUDSELHNG........uuuiiiiiireeeiiiiiir e e e e e e

3.2 Alphabetical List of Instructions
ABS.fmt

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 i

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

CEIL.L.fmt..
CEILW.fmt....

CVT.L.fmt...
CVT.PS.S
CVT.S.fmt
CVT.S.PL
CVT.S.PU
CVT.W.fmt.

DIV.fmt....
DIVU....

FLOOR.L.fmt.... . .
FLOOR M IME L.t b e e h e b e s b e e e s b e s ae e o2 s e S £ £ 4454448841854 44 04410 £ 414842 b e e e h b e e b e e e hb e e sh e e san e e he e r e e reen 135...

T T 145....
JR.HB..

Y 0 {1 PP PP 173...

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

NMADD.fmt...
NMSUB.fmt...

RDPGPR .
gL | 14| ST OO OO P PRSPPI 232...

ROUND.W.fmt..
RSQRT.fmt....

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 iii

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

AppendiX A INSErUCLION Bit ENCOOINGSottt e et e e e e 44 £ 222222221121 nnbee 315

A.1 Instruction Encodings and INStruCtioN CIASSEScovvviiiiiiiiiiiiiiiiis e e e e e e e 315
A.2 Instruction Bit ENCOAING TaBIES.......ccciiiiii i e e e e e e e e e s s ereeaeaeee e s 315
A.3 Floating Point Unit Instruction Format ENCOOINGSuuvviiiiieiiiiiiiiiiiiieicee e ccvivare e e e s emmmmmmmsmeeeess e eeees 322

Appendix B Revision History

iv MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:
Figure 2-15:
Figure 2-16:
Figure 2-17:
Figure 2-18:
Figure 2-19:
Figure 2-20:
Figure 2-21:
Figure 2-22:
Figure 2-23:
Figure 2-24:
Figure 2-25:
Figure 2-26:
Figure 2-27:
Figure 2-28:
Figure 2-29:

Figure 3-1:
Figure 3-2:

Example of INStruCtioN DESCIPLIONuuiiiiiiiiiieii ittt e e e e e e s sommmmemeeeeenss et eeeeaeeeeeeaannnnnes 8.
Example of INSTUCLION FIEIASoooiiiiie e e bbb e e e e e e e e e 9.
Example of Instruction Descriptive Name and Mnemonic
Example of Instruction Format
Example of Instruction Purpose
Example of Instruction Description
Example of Instruction Restrictions
Example of Instruction Operation
Example of Instruction Exception
Example of Instruction Programming NOTES.........c.uuiiiiiiiiiieiiii it ———— e e
COP_LW Pseudocode Function
COP_LD Pseudocode Function
COP_SW Pseudocode Function
COP_SD PseudoCode FUNCHION..........ccoeiiiiiieie e s e s e e e e e e e e e e e e e s e mennmmn e e e e eeeeaaaaeaeees 14

AddressTranslation PSeudocode FUNCHIONooiviiiiiii e eeeaee e e e e e e e e e e e eaaans 14
[IeF=To |\V/=TaqTo] o VAN =2ST=T0Te [oToo o (=N ool U] o o 1o o 1R 15
StoreMemory Pseudocode FUNCLONuuuiiiiiiiiiiiieieie e eeeeee e .15
Prefetch PSeudocode FUNCHIONoiiiiiiic et e ettt cmeemmmmmmmm—n e e e e e eebaan e eaees 16
ValueFPR PSeUdOCOOE FUNCHIONiiiiiiiii ettt e et s mmmemmmmmmmm—n e e e s e en b e as 17

StoreFPR PSeUdOCOTE FUNCHONeiiiiiiiiiiieiieee ettt e s e e e s
SyncOperation Pseudocode Function
SignalException Pseudocode Function
SignalDebugBreakpointException Pseudocode FUNCHON............ccuuiiiiiiiiiiiiiiiiiiie e
SignalDebugModeBreakpointException PSeudocode FUNCLIONcoiiiiiiiiiiiiiiiiieeeee e s
NullifyCurrentinstruction PseudoCode Function
CoprocessorOperation Pseudocode Function
JumpDelaySlot Pseudocode Function
FPConditionCode PSeudoCode FUNCHON...........coiiiiiiiiiiiieee i e e e s re e s e e e
SetFPConditionCode PSeudoCode FUNCHION...........oociiiiiiiiiiiiee et s s e
Example of an ALNV.PS Operation
Usage of Address Fields to Select Index and Way

Figure 3-3: Operation of the EXT INSTIUCTION.......cciiiii ittt e e e e e e e s aeeere e e e e e e e e e e e e sannnnes 131
Figure 3-4: Operation of the INS INSTIUCLIONcoiiiii i e bbb e e e e e e e as 136
Figure 3-5: Unaligned Word Load Using LWL and LWR ... e e e e e aanananaaeae e e e e e 164
Figure 3-6: Bytes Loaded by LWL INSTIUCHIONooiiiiiiiiieie st e e e e e e e e e e e et et e e e e e e e e e eeeeaeaeserereranennnnnnnnns 165
Figure 3-7: Unaligned Word Load Using LWL and LWR ... e e e e e naaananaaaae e e e e e 168
Figure 3-8: Bytes Loaded by LWL INSTIUCHIONooiiiiiieiiieii s e e e e e e e e e e et e e e e e e e e e eeeeaaae e reeerenennnnnnnnns 169
Figure 3-9: Unaligned Word Store Using SWL and SWR .273
Figure 3-10: Bytes Stored by an SWL INSIIUCHIONvuviiiiiiiciiieis et eeessmsemmmnmne e eeseeeernrnnnans 274
Figure 3-11: Unaligned Word Store Using SWR and SWLccoooiiiiiiiiii e e e 275
Figure 3-12: Bytes Stored by SWR INSIIUCHIONuvuieiiiiiieiiii ettt as 276
Figure A-1: Sample Bit ENCOOING TaAbBIE ... s bbbt e e e e e e e e e s 316
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 v

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1-1:
Table 2-1:
Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:
Table 3-5:
Table 3-6:
Table 3-7:

Symbols Used in Instruction Operation StatemMeENtSuuuiiiiiiiiiiiiii e eeeeee e e 2
AccessLength Specifications fOr LOAAS/STOIEScooiiiiiiiiiiiiiiiiee et e e 16
CPU ArithmetiC INSIFUCTIONScooiiiieiiiiie ettt et e e e e e e e e e s s nnn e be e e e e e e aeeeeesannnne 24
CPU Branch and JUMP INSIIUCHIONS.......cccuiiiiiiiiiiiiiie ettt e e e e e e e e e e e e s s eebbebreeeeeeaaeeeas 24
CPU Instruction CoNtrol INSIIUCTIONSeiiiiiiiiiiiiiiiie ettt e e e rmmmeeememnne e 2o neeb e ee e 25
CPU Load, Store, and Memory Control INSTIUCLIONSuvuiiieiiiiiie e e ee et eeeeeememmmmmmm e 25
CPU LOGQICAI INSIIUCLIONSuiiiie i i i e et e e e e e e e e e e e e e e e e e e smmeeeeneeeeme s aeeseaeaeaaaaeaaaeaees 26
CPU INSErt/EXIraCt INSIIUCTIONScciiiiiiiiiiiiittte ettt e e ettt et e e e e e e e e e s bbb e s s mmmmmmmmee s eeeeeeaeaeeesesaannne 26
CPU MOVE INSIIUCLIONS ...ttt ettt ettt et e e e e e a4 e o s ab b et s+ ¢ s £+ 111ttt e et e e e e e e s 26

Table 3-8: CPU Shift Instructions

Table 3-9: CPU Trap INSIIUCTIONSuetitiiiiieeei ittt e e ettt e et e e e e e e s e e bbb et e e et e e cmmmmmeemeeeeeseeeeesaeaannbsbreeeeeaeens 27
Table 3-10: Obsolete CPU Branch INSTIUCLIONScoiiiiiiiiiiiiiiie ettt e e emmmeeeee e e e e e e e e e e e e e aaanes 28
Table 3-11: FPU ArthmetiC INSTIUCTIONSuiiiieiiiiiie ettt e e e e e e s e e e e e e e e e e s e s e bbbt aeaeeeeaaaeeeas 28
Table 3-12: FPU Branch INSITUCLIONS.uuiiiiiiiiieeiie ittt ettt e e et e e e e e e e e e e e s aaabb bbb e e e e e e e aeeeeaaaannns 29
Table 3-13: FPU COMPAIre INSITUCIONSccoiiiiiiiiiiiiie ettt ettt e e e e e ettt e e+ s 51222t t2 222 e e e s 29
Table 3-14: FPU CONVEIt INSIIUCTIONScooiiiiiiiiiiieeee ettt e ettt et e e e e e e e e s s e annr e s et e et eeeeeeeessannnnbeeneees 29
Table 3-15: FPU Load, Store, and Memory Control INStrUCHIONSuuuuiiiiii e e e ereeeseeeeeeeee e e enee 30
Table 3-16: FPU MOVE INSITUCHIONSuuiiiiiiiiieeeieiiitite ettt et et e e e e e e s e bbb e e e e Smmmmmmmmmmmm s f s e e e et e e e e e e e e s aannnes 30
Table 3-17: Obsolete FPU Branch INSTIUCTIONSccciiiiiiiiiiiiiiiiie ittt emmme e e e e e e e e e e e e e e e e e aanes 30
Table 3-18: Coprocessor Branch INSITUCLIONSuuiiiiiii ittt er e e e e e e e e e e saib b e e eeeaeaaeas 31
Table 3-19: Coprocessor EXECULE INSIIUCTIONS.cciiiiiiiiiiiiiiite ettt e e e e e e e b e et e e e eeeas 31
Table 3-20: Coprocessor Load and Store INSITUCHIONSooiuieiiiiiiiiiie ettt e e rmme e e e e e e e e e e e e e e e e e 31
Table 3-21: CoprocesSOor MOVE INSIIUCTIONSueiiiiiiiiiiiiiiieee ettt e e e e e e e e b eeemmmmmmmm st e e e e e e e eeeas 31
Table 3-22: Obsolete Coprocessor BranCh INStrUCTIONS..........cuiiiiiiiiiiiiiiiiii e ee e e e e e e e 31
Table 3-23: Privileged INSIIUCHIONSuiiie e e e e e e e e e e e e s smmmmmm———— et et e st e ssennnnnnnn i ns 31
Table 3-24: EJTAG INSITUCTIONSttt ettt et e e e e e e e s bbbt e e e e ¢ eo— £ £ 444+ 414111ttt e et e e e e e s 32
Table 3-25: FPU Comparisons Without Special Operand Exceptions ... BT UPUUUPUPUPPNSRRRRRRIOY & 1o
Table 3-26: FPU Comparisons With Special Operand Exceptions for QNaNs ... 87
Table 3-27: Usage Of EffECtIVE AUUIESScooiiiiiieeeeeee st e e e e e e e e e et et ettt e et te s s eenennnmnmmmmmseeeeeaeeeeeeeeeeenennes a0
Table 3-28: Encoding of Bits[17:16] of CACHE INSIIUCHONeeiiiiiieiiiiiiiiiiiieeeee e s ISR i |
Table 3-29: Encoding of Bits [20:18] of the CACHE INSIIUCHIONuiiiiiiiiiiiiiiiiiiie e emmmeme e 92
Table 3-30: Values of thieint Field for the PREF INSIFUCLIONc.uiiiiiiiiiiiie et 223
Table 3-31: Hardware ReQISIEr LiSt.......ccccccii i s s s e e e e e e e e e e e e e et e e ee e eat e aa s s s e e s e e eaaaaaaaaaeees 229
Table A-1: Symbols Used in the Instruction Encoding Tables.............ooo e e 316
Table A-2: MIPS32 Encoding of the Opcode Feldooo e 317
Table A-3: MIPS32 SPECIAL Opcode Encoding of Function Field ...
Table A-4: MIPS32 REGIMM ENcoding Of rt FIEIdevviiiiiiiiiiiiie et e e ememmmeeme e eeeeeenees
Table A-5: MIPS32 SPECIAL2 Encoding of FUNCLON Field............ooovviiiiiiiiiicice e e e e e eeee e
Table A-6: MIPS32 SPECIAL3 Encoding of Function Field for Release 2 of the Architecture ...

Table A-7: MIPS32 MOVCI Encoding Of tf Bit..........uuuuuiiiiiiiiiiii e

Table A-8: MIPS32 SRL Encoding of Shift/Rotate...............cooooiiiiiiiiier e s
Table A-9: MIPS32 SRLV Encoding Of Shift/ROtALEuuuueiiiiii i
Table A-10: MIPS32 BSHFL Encoding of Sa FIeldccooiiiiiiie e s 111
Table A-11: MIPS32 COPO Encoding of rs Field

Table A-12: MIPS32 COPO Encoding of Function Field When rS=COuuiiiiiiiii e e 320
Table A-13: MIPS32 COP1 ENCOding Of 1S FIeld.......uuuiiiiii i e e e e e e e e e e e e e e s 320
Table A-14: MIPS32 COP1 Encoding of Function Field WheN IS=S ... e eeeeeeeeeees 320
Table A-15: MIPS32 COP1 Encoding of Function Field WHen rS=D.........cuvvuiiiiiiiiiiiiiiiiie e e 321
Table A-16: MIPS32 COP1 Encoding of Function Field When rS=W OF L........ooveviiiiiiiiiiciiis e eeeeeeeeeeens 321
Table A-17: MIPS64 COP1 Encoding of Function Field When rS=PS ... 321
vi MIPS32™ Architecture For Programmers Volume Il, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table A-18:
Table A-19:
Table A-20:
Table A-21:

MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCFccccccccvvrnrciiennennn.
MIPS32 COP2 ENcoding Of IS FIEld..........oevviiiiiiiiiiiiieis sttt e eeesne e e e e eeeeeeannees
MIPS64 COP1X Encoding of Function Field
Floating Point Unit Instruction Format Encodings

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

vii

viii MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

The MIPS32™ Architecture For Programmers Volume Il comes as a multi-volume set.

» Volume | describes conventions used throughout the document set, and provides an introduction to the MIPS32™
Architecture

» Volume |l provides detailed descriptions of each instruction in the MIPS32™ instruction set

* Volume 11l describes the MIPS32™ Privileged Resource Architecture which defines and governs the behavior of the
privileged resources included in a MIPS32™ processor implementation

* Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

* Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32™ Architecture and is not
applicable to the MIPS32™ document set

* Volume IV-c describes the MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture and is not
applicable to the MIPS32™ document set

* \olume IV-d describes the SmartMIPS™ Application-Specific Extension to the MIPS32™ Architecture

1.1 Typographical Conventions

This section describes the usetalfic, bold andcourier fonts in this book.

1.1.1 Iltalic Text
* is used foemphasis

* is used fobits, fields registers that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and vditmating point instruction formatsuch ass, D, andPS

* is used for the memory access types, sudaesedanduncached

1.1.2 Bold Text
 represents a term that is beuhefined

* is used fobits andfields that are important from a hardware perspective (for instaggister bits, which are not
programmable but accessible only to hardware)

* is used for ranges of numbers; the range is indicated by an ellipsis. For inStdnndjcates numbers 5 through 1

* is used to emphasiz¢éNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 1

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

1.2 UNPREDICTABLE and UNDEFINED

The termdUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain caséNDEFINED behavior or operations can occur only as the result of executing instructions
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never callldDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can caud®lPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If aresultis generated,
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

Implementations of operations generatiiyPREDICTABLE results must not depend on any data source (memory
or internal state) which is inaccessible in the current processor mode

UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which is
inaccessible in the current processor mode. For exatdNIBREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another process

UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instrudh@EFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer coddiNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor
to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are Tiatdd i1

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

- Assignment

=% Tests for equality and inequality

II Bit string concatenation

xY A y-bit string formed by copies of the single-bit value

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

Table 1-1 Symbols Used in Instruction Operation Statements

binary

ented.

ne
lanness

Symbol Meaning
A constant valua in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the
b#n value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix is
omitted, the default base is 10.
X Selection of bitg/ throughz of bit stringx. Little-endian bit notation (rightmost bit is 0) is usedyli less than
y..Z z, this expression is an empty (zero length) bit string.
+, - 2's complement or floating point arithmetic: addition, subtraction
0 x 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwise logical XOR
and Bitwise logical AND
or Bitwise logical OR
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPRIX] CPU general-purpose registerThe content o6PR[0] is always zero.
SGPR][s,x] glGRPeFI{ease 2 of the Architecture, multiple copies of the CPU general-purpose registers may be implem
[s.x]refers to GPR se registeix. GPR[X] is a short-hand notation 8GPR[SRSCtkg X].
FPR[X] Floating Point operand register
FCC[CC] Floating Point condition code CECCJ[0] has the same value @OC[1].
FPR[X] Floating Point (Coprocessor unit 1), general register
CPRJ[z,x,s] Coprocessor unit, general registex, selects
CP2CPR[X] Coprocessor unit 2, general register
CCRJz,X] Coprocessor uni, control registek
CP2CCRIx] Coprocessor unit 2, control register
COCJz] Coprocessor unit condition signal
Xlat[x] Translation of the MIPS16e GPR numizénto the corresponding 32-bit GPR number
Endian mode as configured at chip reset.(Gttle-Endian, 1- Big-Endian). Specifies the endianness of t
BigEndianMem memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the end
of Kernel and Supervisor mode execution.
The endianness for load and store instructions (0ttle-Endian, 1- Big-Endian). In User mode, this
BigEndianCPU endianness may be switched by settingRifighit in the Statusregister. Thus, BigEndianCPU may be comput

as (BigendianMem XOR ReverseEndian).

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

Signal to reverse the endianness of load and store instructions. This feature is available in User mode gnly, and
ReverseEndian is implemented by setting tHREDbit of the Statusregister. Thus, ReverseEndian may be computed asg SR
User mode).

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-uritie is set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other ¢PU

operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception return
instructions.

LLbit

This occurs as a prefix @perationdescription lines and functions as a label. It indicates the instruction fime
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to p time
label ofl. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labeled
with the instruction time, relative to the current instructiom which the effect of that pseudocode appears|to

I, occur. For example, an instruction may have a result that is not available until after the next instruction. Such an
I+n:, instruction has the portion of the instruction operation description that writes the result register in a section
I-n: labeled +1.
The effect of pseudocode statements for the current instruction lalbellegppears to occur “at the same time”
as the effect of pseudocode statements labefedthe following instruction. Within one pseudocode sequente,
the effects of the statements take place in order. However, between sequences of statements for diffefent
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a particular
order of evaluation between such sections.

TheProgram Counteralue. During the instruction time of an instruction, this is the address of the instrugtion
word. The address of the instruction that occurs during the next instruction time is determined by assigning a
value toPC during an instruction time. If no value is assigneB@during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instfuction)
or 4 before the next instruction time. A taken branch assigns the target addresP@dhgng the instruction
time of the instruction in the branch delay slot.

PC

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 physical
address bits were implemented, the size of the physical address space w6l '5e=22%6 bytes.

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32-bit
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bjt FPRs
in which 64-bit data types are stored in any FPR.

FP32RegistersMode In MIPS32 implementation§P32RegistersModes always a 0. MIPS64 implementations have a compatibility

mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterModes computed from the FR bit in thetatusregister. If this bit is a 0, the processor operates
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value oFP32RegistersModds computed from the FR bit in ti8tatusregister.

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch or
InstructioninBranchD| jump. This condition reflects ttdynamicstate of the instruction, not teeatic state. That is, the value is falsp

elaySlot if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is not
executed in the delay slot of a branch or jump.

Causes an exception to be signaled, using the exception parameter as the type of exception and the grgument
parameter as an exception-specific argument). Control does not return from this pseudocode function|- the
exception is signaled at the point of the call.

SignalException(exce
ption, argument)

1.4 For More Information
Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS URL:

http://www.mips.com
4 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Comments or questions on the MIPS32™ Architecture or this document should be directed to

Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00 5

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

6 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2-1shows an example instruction. Following the figure are descriptions of the fields listed below:
* “Instruction Fields” on page 8

* “Instruction Descriptive Name and Mnemonic” on page 9

» “Format Field” on page 9

» “Purpose Field” on page 10

» “Description Field” on page 10

» “Restrictions Field” on page 10

» “Operation Field” on page 11

» “Exceptions Field” on page 11

» “Programming Notes and Implementation Notes Fields” on page 11

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 7

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

Instruction Mnemonic

and Descriptive Name —# Example Instruction Name EXAMPLE

Instruction encodin

constant and variabg:e\ 31 26 25 21 20 16 15 11 10 6 5 0

field names and values SPECIAL rs rt rd 0 EXAMPLE
000000 00000 000000

Architecture level at 6 5 5 5 5 6

which instruction was

defined/redefined and

assembler format(s) fOI'/V Format: EXAMPLE rd, rs,rt MIPS32

each definition
Short description ———————» Purpose:to execute an EXAMPLE op

Symbolic description i A
Description: rd « rs exampleop rt

Full description of / This section describes the operation of the instruction in text, tables, and
instruction operation illustrations. It includes information that would be difficult to encode in the
Operation section.

Restrictions on Restriction
instruction and strictions

operands This section lists any restrictions for the instruction. This can include values of the
instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory
access for addressed locations.

High-level language .
description ofinstruction\> Oper.atlon: . . .) L
operation * This section describes the operation of an instruction in a */
/* high-level pseudo-language. It is precise in ways that the */
[* Description section is not, but is also missing information */
[* that is hard to express in pseudocode.*/
temp ~ GPR][rs] exampleop GPR]rt]
GPR[rd] ~ temp

Exceptions that

. . Exceptions:
instruction can cause

A list of exceptions taken by the instruction

Notes for programmers —— g Programming Notes:
Information useful to programmers, but not necessary to describe the operation of
the instruction

Notes for implementors . .
~——® |mplementation Notes:
Like Programming Notesexcept for processor implementors

Figure 2-1 Example of Instruction Description

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The following
rules are followed:

8 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.1 Understanding the Instruction Fields

» The values of constant fields and tdpeodenames are listed in uppercase (SPECIAL and ADBigare 2-3.
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

« All variable fields are listed with the lowercase names used in the instruction descrigtidrafidrd in Figure 2-3.

« Fields that contain zeros but are not named are unused fields that are required to be zero (bigwe&H]. If
such fields are set to non-zero values, the operation of the procddBREDICTABLE .

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADD
rs rt rd
000000 00000 100000
6 5 5 5 5 6

Figure 2-2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, a§isfuve/n in
2-3.

Add Word ADD

Figure 2-3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in theFormatfield. If the instruction definition was later extended, the architecture levels at which it was extended
and the assembler formats for the extended definition are shown in their order of extension (for an example, see
C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in previous
levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the extended
architecture.

Format: ADDrd, rs, rt MIPS32

Figure 2-4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at which
the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid valuenofitid. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00 9

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purposefield gives a short description of the use of the instruction.

Purpose:
To add 32-bit integers. If an overflow occurs, then trap.

Figure 2-5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the righDeéthiption
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Description: rd < rs+rt
The 32-bit word value in GPR is added to the 32-bit value in GP&Ro produce a 32-bit result.

* If the addition results in 32-bit 2’'s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs

« If the addition does not overflow, the 32-bit result is placed into PR

Figure 2-6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description irOherationsection.

This section uses acronyms for register descriptions. “GHR CPU general-purpose register specified by the
instruction fieldrt. “FPRTS’ is the floating point operand register specified by the instruction feltCP1 registerfd”
is the coprocessor 1 general register specified by the instructiofdfielCSR is the floating pointControl /Status
register.

2.1.6 Restrictions Field
TheRestrictiondield documents any possible restrictions that may affect the instruction. Most restrictions fall into one
of the following six categories:
« Vdid values for instruction fields (for example, see floating point ADD.fmt)
» ALIGNMENT requirements for memory addresses (for example, see LW)
« Valid values of operands (for example, see DADD)
« Valid operand formats (for example, see floating point ADD.fmt)

 Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards for
which some processors do not have hardware interlocks (for example, see MUL).

 Valid memory access types (for example, see LL/SC)

10 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.1 Understanding the Instruction Fields

Restrictions:

None

Figure 2-7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operationfield describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. This formal description complement®dseriptionsection; it is not complete in itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation:

temp ~ (GPR[rs] 3;]IGPR[rs] 310) +(GPR[rt] 3]|IGPR[rt] 31 0)
iftemp 3, #temp 3; then

SignalException(IntegerOverflow)
else

GPR[rd] « temp
endif

Figure 2-8 Example of Instruction Operation

See Section 2.2, "Operation Section Notation and Functions” on page 12 for more information on the formal notation
used here.

2.1.8 Exceptions Field

TheExceptiondield lists the exceptions that can be cause@lpgrationof the instruction. It omits exceptions that can

be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by
asynchronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship

between load and store instructions and external error indications, like Bus Error, are dependent upon the
implementation.

Exceptions:

Integer Overflow

Figure 2-9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not preseBkaeti@nssection.

2.1.9 Programming Notes and Implementation Notes Fields

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00 11

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The Notessections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Programming Notes:
ADDU performs the same arithmetic operation but does not trap on overflow.

Figure 2-10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

12

In an instruction description, tl@perationsection uses a high-level language notation to describe the operation
performed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 12

» “Pseudocode Functions” on page 12

2.2.1 Instruction Execution Ordering

Each of the high-level language statements irQperationssection are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and include
the following:

» “Coprocessor General Register Access Functions” on page 12
» “Load Memory and Store Memory Functions” on page 14
» “Access Functions for Floating Point Registers” on page 16

» “Miscellaneous Functions” on page 18

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and how
a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted into the
functions described in this section.

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a load
word operation. The action is coprocessor-specific. The typical action would be to store the contents of memword in
coprocessor general register

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt : Coprocessor general register specifier
memword A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW
Figure 2-11 COP_LW Pseudocode Function

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory during
a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the contents of
memdouble in coprocessor general regigter

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt : Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD
Figure 2-12 COP_LD Pseudocode Function

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word operation.
The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register

dataword ~ COP_SW (z, rt)
z: The coprocessor unit number
rt : Coprocessor general register specifier
dataword : 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW
Figure 2-13 COP_SW Pseudocode Function

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store
doubleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register

datadouble ~ COP_SD (z, rt)
z: The coprocessor unit number
rt : Coprocessor general register specifier
datadouble : 64-bit doubleword value

/* Coprocessor-dependent action */

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00 13

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

14

endfunction COP_SD
Figure 2-14 COP_SD Pseudocode Function

2.2.2.2 Load Memory and Store Memory Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In theOperationpseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the
AccessLengtfield. The valid constant names and values are showalite 2-1 The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly from
the AccessLengthnd the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cache coherence algorithm,
describing the mechanism used to resolve the memory reference.

Given the virtual addressAddr, and whether the reference is to Instructions or Dat®}, find the corresponding
physical addresp@ddr and the cache coherence algorithCA) used to resolve the reference. If the virtual address
is in one of the unmapped address spaces, the physical addreS€ Amde determined directly by the virtual address.

If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU determines the
physical address and access type; if the required translation is not present in the TLB or the desired access is not
permitted, the function fails and an exception is taken.

(pAddr, CCA) ~ AddressTranslation (vAddr, lorD, LorS)

/* pAddr: physical address */
/* CCA Cache Coherence Algorithm, the method used to access caches*/
* and memory and resolve the reference */

/* vAddr : virtual address */
/* lorD . Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume Il of this book for the exact translation mechanism */

endfunction AddressTranslation

Figure 2-15 AddressTranslation Pseudocode Function

LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cache Coherence AlgGArand the access

(lorD) to find the contents chccessLengtmemory bytes, starting at physical locatipAddr The data is returned in a
fixed-width naturally aligned memory elememegmElen). The low-order 2 (or 3) bits of the address and the
AccesslLengtimdicate which of the bytes withiMlemElemmeed to be passed to the processor. If the memory access type
of the reference igncachedonly the referenced bytes are read from memory and marked as valid within the memory
element. If the access typedachedbut the data is not present in cache, an implementation-spsizéandalignment

block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this block is the entire
memory element.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

MemElem — LoadMemory (CCA, AccessLength, pAddr, vAddr, lorD)

/* MemElem Data is returned in a fixed width with a natural alignment. The */

[* width is the same size as the CPU general-purpose register, */

I* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

I* respectively. */

* CCA Cache Coherence Algorithm, the method used to access caches */
I* and memory and resolve the reference */

/¥ AccessLength : Length, in bytes, of access */

I* pAdadr: physical address */
/* vAddr : virtual address */
/* lorD Indicates whether access is for Instructions or Data */

endfunction LoadMemory

Figure 2-16 LoadMemory Pseudocode Function

StoreMemory
The StoreMemory function stores a value to memory.

The specified data is stored into the physical locgtidddrusing the memory hierarchy (data caches and main memory)
as specified by the Cache Coherence Algorit6@A). TheMemElemcontains the data for an aligned, fixed-width
memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the bytes that are
actually stored to memory need be valid. The low-order two (or three) bgaddfirand theAccessLengtfield indicate
which of the bytes within th®lemElendata should be stored; only these bytes in memory will actually be changed.

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA Cache Coherence Algorithm, the method used to access */
* caches and memory and resolve the reference. */

/¥ AccessLength : Length, in bytes, of access */

/* MemElem Data in the width and alignment of a memory element. */

1* The width is the same size as the CPU general */

1* purpose register, either 4 or 8 bytes, */

I* aligned on a 4- or 8-byte boundary. For a */

[* partial-memory-element store, only the bytes that will be*/
I* stored must be valid.*/

I* pAdadr: physical address */

/¥ vAddr : virtual address */

endfunction StoreMemory

Figure 2-17 StoreMemory Pseudocode Function

Prefetch
The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may increase
performance but must not change the meaning of the program or alter architecturally visible state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA Cache Coherence Algorithm, the method used to access */
* caches and memory and resolve the reference. */
/* pAddr: physical address */

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00 15

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

/* vAddr : virtual address */
/* DATA Indicates that access is for DATA */
/* hint : hint that indicates the possible use of the data */

endfunction Prefetch

Figure 2-18 Prefetch Pseudocode Function

Table 2-1lists the data access lengths and their labels for loads and stores.

Table 2-1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

2.2.2.3 Access Functions for Floating Point Registers

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are interpreted
to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a load
(uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.
value ~ ValueFPR(fpr, fmt)
/* value: The formattted value from the FPR */

[*fpr: The FPR number */
/* fmt: The format of the data, one of: */

* S,D, W, L, PS, ¥
/* OB, QH, */

* UNINTERPRETED_WORD, */

* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:
valueFPR ~ FPR]fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode =0)
if (fpr o #0)then
valueFPR ~ UNPREDICTABLE

16 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

else
valueFPR « FPR[fpr +1] 31 9 [[FPR[fpr] 310
endif
else
valueFPR ~ FPRIfpr]
endif
L, PS:
if (FP32RegistersMode =0) then
valueFPR ~ UNPREDICTABLE
else
valueFPR ~ FPR]fpr]
endif
DEFAULT:

valueFPR ~ UNPREDICTABLE

endcase
endfunction ValueFPR

Figure 2-19 ValueFPR Pseudocode Function

StoreFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instructions.
Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a different
format.

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */

I* S,D, W, L, PS,*

I* OB, QH, */

I* UNINTERPRETED_WORD, */

I* UNINTERPRETED_DOUBLEWORD */

/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:
FPR[fpr] ~ value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode =0)
if (fpr o #0)then
UNPREDICTABLE
else

FPR[fpr] — UNPREDICTABLE? ||value 3;
FPR[for +1] — UNPREDICTABLE? | value &3 3,
endif
else
FPRI[fpr] ~ value
endif
MIPS32™ Architecture For Programmers Volume Il, Revision 2.00 17

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

18

L, PS:
if (FP32RegistersMode =0) then
UNPREDICTABLE
else
FPRI[fpr] ~ value
endif
endcase

endfunction StoreFPR

Figure 2-20 StoreFPR Pseudocode Function

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SyncOperation
The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicsitgaebgcur in the same order for all
processors.

SyncOperation(stype)
/¥ stype : Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

Figure 2-21 SyncOperation Pseudocode Function

SignalException
The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

SignalException(Exception, argument)

I* Exception : The exception condition that exists. */
[* argument: A exception-dependent argument, if any */

endfunction SignalException

Figure 2-22 SignalException Pseudocode Function

SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-Debug
Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

SignalDebugBreakpointException()
endfunction SignalDebugBreakpointException
Figure 2-23 SignalDebugBreakpointException Pseudocode Function
SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

SignalDebugModeBreakpointException()
endfunction SignalDebugModeBreakpointException

Figure 2-24 SignalDebugModeBreakpointException Pseudocode Function

NullifyCurrentinstruction
The NullifyCurrentinstruction function nullifies the current instruction.
The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

NullifyCurrentinstruction()

endfunction NullifyCurrentinstruction

Figure 2-25 NullifyCurrentinstruction PseudoCode Function

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

* z: Coprocessor unit number */
[* cop_fun : Coprocessor function from function field of instruction */
/* Transmit the cop_fun value to coprocessor z*

endfunction CoprocessorOperation
Figure 2-26 CoprocessorOperation Pseudocode Function
JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction ®fddris executed in a jump delay slot. A jump delay slot always immediately
follows a JR, JAL, JALR, or JALX instruction.

JumpDelaySlot(vAddr)

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00 19

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

/¥ vAddr :Virtual address */
endfunction JumpDelaySlot
Figure 2-27 JumpDelaySlot Pseudocode Function
FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.
tf — FPConditionCode(cc)
/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then

FPConditionCode —~ FCSRy3
else

FPConditionCode — FCSRo4+¢c
endif

endfunction FPConditionCode

Figure 2-28 FPConditionCode Pseudocode Function

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

SetFPConditionCode(cc)
if cc = 0 then
FCSR — FCSR31. 24 |l tf|| FCSR 22.0
else
FCSR « FCSR3y p54cc || tF|| FCSR 23+cc..0
endif

endfunction SetFPConditionCode

Figure 2-29 SetFPConditionCode Pseudocode Function

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfiedgandfunctioncan have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 andunction=ADD. In other cases, a single field has both fixed and variable subfields, so the name contains
both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (sutth as
immediate and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in
uppercase.

20 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.4 FPU Instructions

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
examplers=basein the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See Section 2.3, "Op and Function Subfield Notation" on page 20 for a descriptionpéatitdunctionsubfields.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 21

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

22 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3

The MIPS32™ |nstruction Set

3.1 Compliance and Subsetting

To be compliant with the MIPS32 Architecture, designs must implement a set of required features, as described in this
document set. To allow flexibility in implementations, the MIPS32 Architecture does provide subsetting rules. An
implementation that follows these rules is compliant with the MIPS32 Architecture as long as it adheres strictly to the
rules, and fully implements the remaining instructions.Supersetting of the MIPS32 Architecture is only allowed by
adding functions to thEPECIAL2major opcode, by adding control for co-processors vi€B2 LWC2 SWC2

LDC2, and/orSDC2 and/or COP3 opcodes, or via the addition of approved Application Specific Extensions. Note,
however, that a decision to use @P3opcode in an implementation of the MIPS32 Architecture precludes a
compatible upgrade to the MIPS64 Architecture becausé@3opcode is used as part of the floating point ISA in

the MIPS64 Architecture.

The instruction set subsetting rules are as follows:

All CPU instructions must be implemented - no subsetting is allowed.

The FPU and related support instructions, including the MOVF and MOVT CPU instructions, may be omitted.
Software may determine if an FPU is implemented by checking the state of the FP bitdorifiglCPO register. If

the FPU is implemented, it must include S, D, and W formats, operate instructions, and all supporting instructions.
Software may determine which FPU data types are implemented by checking the appropriate BIRIC#k

register. The following allowable FPU subsets are compliant with the MIPS32 architecture:

— No FPU
— FPU with S, D, and W formats and all supporting instructions

Coprocessor 2 is optional and may be omitted. Software may determine if Coprocessor 2 is implemented by
checking the state of the C2 bit in t8enfiglCPO register. If Coprocessor 2 is implemented, the Coprocessor 2
interface instructions (BC2, CFC2, COP2, CTC2, LDC2, LWC2, MFC2, MTC2, SDC2, and SWC2) may be omitted
on an instruction-by-instruction basis.

Supervisor Mode is optional. If Supervisor Mode is not implemented, bit 3 Statesregister must be ignored on
write and read as zero.

The standard TLB-based memory management unit may be replaced with a simpler MMU (e.g., a Fixed Mapping
MMU). If this is done, the rest of the interface to the Privileged Resource Architecture must be preserved. If a
TLB-based memory management unit is implemented, it must be the standard TLB-based MMU as described in the
Privileged Resource Architecture chapter. Software may determine the type of the MMU by checking the MT field in
the ConfigCPO register.

The Privileged Resource Architecture includes several implementation options and may be subsetted in accordance
with those options.

Instruction, CPO Register, and CP1 Control Register fields that are marked “Reserved” or shown as “0” in the
description of that field are reserved for future use by the architecture and are not available to implementations.
Implementations may only use those fields that are explicitly reserved for implementation dependent use.

Supported ASEs are optional and may be subsetted out. If most cases, software may determine if a supported ASE is
implemented by checking the appropriate bit in@loafiglor Config3CPO register. If they are implemented, they

must implement the entire ISA applicable to the component, or implement subsets that are approved by the ASE
specifications.

EJTAG is optional and may be subsetted out. If it is implemented, it must implement only those subsets that are
approved by the EJTAG specification.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 23

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS32™ [nstruction Set

« If any instruction is subsetted out based on the rules above, an attempt to execute that instruction must cause the
appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

3.2 Alphabetical List of Instructions

Table 3-1throughTable 3-24provide a list of instructions grouped by category. Individual instruction descriptions
follow the tables, arranged in alphabetical order.

Table 3-1 CPU Arithmetic Instructions

24

Mnemonic Instruction
ADD Add Word
ADDI Add Immediate Word
ADDIU Add Immediate Unsigned Word
ADDU Add Unsigned Word
CLO Count Leading Ones in Word
CLz Count Leading Zeros in Word
DIV Divide Word
DIVU Divide Unsigned Word
MADD Multiply and Add Word to Hi, Lo
MADDU Multiply and Add Unsigned Word to Hi, Lo
MSUB Multiply and Subtract Word to Hi, Lo
MSUBU Multiply and Subtract Unsigned Word to Hi, Lo
MUL Multiply Word to GPR
MULT Multiply Word
MULTU Multiply Unsigned Word
SEB Sign-Extend Byte Release 2 Only
SEH Sign-Extend Halftword Release 2 Only
SLT Set on Less Than
SLTI Set on Less Than Immediate
SLTIU Set on Less Than Immediate Unsigned
SLTU Set on Less Than Unsigned
SuUB Subtract Word
SUBU Subtract Unsigned Word
Table 3-2 CPU Branch and Jump Instructions
Mnemonic Instruction
B Unconditional Branch

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions

Table 3-2 CPU Branch and Jump Instructions

y

Mnemonic Instruction
BAL Branch and Link
BEQ Branch on Equal
BGEZ Branch on Greater Than or Equal to Zero
BGEZAL Branch on Greater Than or Equal to Zero and Link
BGTZ Branch on Greater Than Zero
BLEZ Branch on Less Than or Equal to Zero
BLTZ Branch on Less Than Zero
BLTZAL Branch on Less Than Zero and Link
BNE Branch on Not Equal
J Jump
JAL Jump and Link
JALR Jump and Link Register
JALR.HB Jump and Link Register with Hazard Barrier Release 2 On
JR Jump Register
JR.HB Jump Register with Hazard Barrier Release 2 Ol|\ly
Table 3-3 CPU Instruction Control Instructions
Mnemonic Instruction
EHB Execution Hazard Barrier Release 2 Only
NOP No Operation
SSNOP Superscalar No Operation
Table 3-4 CPU Load, Store, and Memory Control Instructions
Mnemonic Instruction
LB Load Byte
LBU Load Byte Unsigned
LH Load Halfword
LHU Load Halfword Unsigned
LL Load Linked Word
Lw Load Word
LWL Load Word Left
LWR Load Word Right
PREF Prefetch

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

25

Chapter 3 The MIPS32™ [nstruction Set

26

Table 3-4 CPU Load, Store, and Memory Control Instructions

Mnemonic Instruction
SB Store Byte
SC Store Conditional Word
SD Store Doubleword
SH Store Halfword
SW Store Word
SWL Store Word Left
SWR Store Word Right
SYNC Synchronize Shared Memory
SYNCI Synchronize Caches to Make Instruction Writes Effective Release 2 Qnly
Table 3-5 CPU Logical Instructions
Mnemonic Instruction
AND And
ANDI And Immediate
LUI Load Upper Immediate
NOR Not Or
OR Or
ORI Or Immediate
XOR Exclusive Or
XORI Exclusive Or Immediate
Table 3-6 CPU Insert/Extract Instructions
Mnemonic Instruction
EXT Extract Bit Field Release 2 Only
INS Insert Bit Field Release 2 Only
WSBH Word Swap Bytes Within Halfwords Release 2 Only
Table 3-7 CPU Move Instructions
Mnemonic Instruction
MFHI Move From HI Register
MFLO Move From LO Register
MOVF Move Conditional on Floating Point False

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions

Table 3-7 CPU Move Instructions

Mnemonic Instruction
MOVN Move Conditional on Not Zero
MOVT Move Conditional on Floating Point True
MOvVZz Move Conditional on Zero
MTHI Move To HI Register
MTLO Move To LO Register
RDHWR Read Hardware Register Release 2 Only
Table 3-8 CPU Shift Instructions
Mnemonic Instruction
ROTR Rotate Word Right Release 2 Onl
ROTRV Rotate Word Right Variable Release 2 Only
SLL Shift Word Left Logical
SLLV Shift Word Left Logical Variable
SRA Shift Word Right Arithmetic
SRAV Shift Word Right Arithmetic Variable
SRL Shift Word Right Logical
SRLV Shift Word Right Logical Variable
Table 3-9 CPU Trap Instructions
Mnemonic Instruction
BREAK Breakpoint
SYSCALL System Call
TEQ Trap if Equal
TEQI Trap if Equal Immediate
TGE Trap if Greater or Equal
TGEI Trap if Greater of Equal Immediate
TGEIU Trap if Greater or Equal Immediate Unsigned
TGEU Trap if Greater or Equal Unsigned
TLT Trap if Less Than
TLTI Trap if Less Than Immediate
TLTIU Trap if Less Than Immediate Unsigned
TLTU Trap if Less Than Unsigned
TNE Trap if Not Equal

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00

27

Chapter 3 The MIPS32™ [nstruction Set

28

Table 3-9 CPU Trap Instructions

Mnemonic Instruction

TNEI Trap if Not Equal Immediate
Table 3-10 Obsoleté CPU Branch Instructions

Mnemonic Instruction
BEQL Branch on Equal Likely
BGEZALL Branch on Greater Than or Equal to Zero and Link Likely
BGEZL Branch on Greater Than or Equal to Zero Likely
BGTZL Branch on Greater Than Zero Likely
BLEZL Branch on Less Than or Equal to Zero Likely
BLTZALL Branch on Less Than Zero and Link Likely
BLTZL Branch on Less Than Zero Likely
BNEL Branch on Not Equal Likely

1. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from

a future revision of the MIPS32 architecture.

Table 3-11 FPU Arithmetic Instructions

Mnemonic Instruction
ABS.fmt Floating Point Absolute Value
ADD.fmt Floating Point Add
DIV.fmt Floating Point Divide
MADD.fmt Floating Point Multiply Add
MSUB.fmt Floating Point Multiply Subtract
MUL.fmt Floating Point Multiply
NEG.fmt Floating Point Negate
NMADD.fmt Floating Point Negative Multiply Add
NMSUB.fmt Floating Point Negative Multiply Subtract
RECIP.fmt Reciprocal Approximation
RSQRT.fmt Reciprocal Square Root Approximation
SQRT Floating Point Square Root
SUB.fmt Floating Point Subtract

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions

Table 3-12 FPU Branch Instructions

Mnemonic Instruction
BC1F Branch on FP False
BC1T Branch on FP True
Table 3-13 FPU Compare Instructions
Mnemonic Instruction
C.cond.fmt Floating Point Compare
Table 3-14 FPU Convert Instructions
Mnemonic Instruction

ALNV.PS Floating Point Align Variable 64-bit FPU Only
CEIL.L.fmt Floating Point Ceiling Convert to Long Fixed Point 64-bit FPU Oply
CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed Point
CVT.D.fmt Floating Point Convert to Double Floating Point
CVT.L.fmt Floating Point Convert to Long Fixed Point 64-bit FPU Orlmly
CVT.PS.S Floating Point Convert Pair to Paired Single 64-bit FPU Only
CVT.S.PL Floating Point Convert Pair Lower to Single Floating Point 64-bit FPU Only
CVT.S.PU Floating Point Convert Pair Upper to Single Floating Point 64-bit FPU Dnly
CVT.S.fmt Floating Point Convert to Single Floating Point
CVT.W.fmt Floating Point Convert to Word Fixed Point
FLOOR.L.fmt Floating Point Floor Convert to Long Fixed Point 64-bit FPU Qnly
FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point
PLL.PS Pair Lower Lower 64-bit FPU Only
PLU.PS Pair Lower Upper 64-bit FPU Only
PUL.PS Pair Upper Lower 64-bit FPU Only
PUU.PS Pair Upper Upper 64-bit FPU Only
ROUND.L.fmt Floating Point Round to Long Fixed Point 64-bit FPU Only
ROUND.W.fmt | Floating Point Round to Word Fixed Point
TRUNC.L.fmt Floating Point Truncate to Long Fixed Point 64-bit FPU Only
TRUNC.W.fmt Floating Point Truncate to Word Fixed Point

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

29

Chapter 3 The MIPS32™ [nstruction Set

Table 3-15 FPU Load, Store, and Memory Control Instructions

1. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from
a future revision of the MIPS32 architecture.

30

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Mnemonic Instruction
LDC1 Load Doubleword to Floating Point
LDXC1 Load Doubleword Indexed to Floating Point 64-bit FPU Only
LUXC1 Load Doubleword Indexed Unaligned to Floating Point 64-bit FPU Only
LWC1 Load Word to Floating Point
LWXC1 Load Word Indexed to Floating Point 64-bit FPU Only
PREFX Prefetch Indexed
SDC1 Store Doubleword from Floating Point
SDXC1 Store Doubleword Indexed from Floating Point 64-bit FPU Qnly
SUXC1 Store Doubleword Indexed Unaligned from Floating Point 64-bit FPU QOnly
SWC1 Store Word from Floating Point
SWXC1 Store Word Indexed from Floating Point 64-bit FPU Oply

Table 3-16 FPU Move Instructions

Mnemonic Instruction
CFC1 Move Control Word from Floating Point
CTC1 Move Control Word to Floating Point
MFC1 Move Word from Floating Point
MFHC1 Move Word from High Half of Floating Point Register Release 2 O+Iy
MOV.fmt Floating Point Move
MOVF.fmt Floating Point Move Conditional on Floating Point False
MOVN.fmt Floating Point Move Conditional on Not Zero
MOVT.fmt Floating Point Move Conditional on Floating Point True
MOVZ.fmt Floating Point Move Conditional on Zero
MTC1 Move Word to Floating Point
MTHC1 Move Word to High Half of Floating Point Register Release 2 Only

Table 3-17 Obsoleté FPU Branch Instructions
Mnemonic Instruction
BC1FL Branch on FP False Likely
BC1TL Branch on FP True Likely

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

3.2 Alphabetical List of Instructions

Table 3-18 Coprocessor Branch Instructions

Mnemonic Instruction
BC2F Branch on COP2 False
BC2T Branch on COP2 True
Table 3-19 Coprocessor Execute Instructions
Mnemonic Instruction
COP2 Coprocessor Operation to Coprocessor 2
Table 3-20 Coprocessor Load and Store Instructions
Mnemonic Instruction
LDC2 Load Doubleword to Coprocessor 2
LWC2 Load Word to Coprocessor 2
SDC2 Store Doubleword from Coprocessor 2
SWC2 Store Word from Coprocessor 2
Table 3-21 Coprocessor Move Instructions
Mnemonic Instruction
CFC2 Move Control Word from Coprocessor 2
CTC2 Move Control Word to Coprocessor 2
MFC2 Move Word from Coprocessor 2
MFHC2 Move Word from High Half of Coprocessor 2 Register Release 2 Only
MTC2 Move Word to Coprocessor 2
MTHC2 Move Word to High Half of Coprocessor 2 Register Release 2 Only
Table 3-22 Obsoleté Coprocessor Branch Instructions
Mnemonic Instruction
BC2FL Branch on COP2 False Likely
BC2TL Branch on COP2 True Likely
1. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from
a future revision of the MIPS32 architecture.
Table 3-23 Privileged Instructions
Mnemonic Instruction
CACHE Perform Cache Operation

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

31

Chapter 3 The MIPS32™ [nstruction Set

Table 3-23 Privileged Instructions

Mnemonic Instruction
DI Disable Interrupts Release 2 Only
El Enable Interrupts Release 2 Only
ERET Exception Return
MFCO Move from Coprocessor 0
MTCO Move to Coprocessor 0
RDPGPR Read GPR from Previous Shadow Set Release 2 Only
TLBP Probe TLB for Matching Entry
TLBR Read Indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry
WAIT Enter Standby Mode
WRPGPR Write GPR to Previous Shadow Set Release 2 gnly

Table 3-24 EJTAG Instructions

Mnemonic Instruction
DERET Debug Exception Return
SDBBP Software Debug Breakpoint
32 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Absolute Value ABS.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 ABS

fmt fs fd
010001 00000 000101

6 5 5 5 5 6
Format: ABS.Sfd, fs MIPS32
ABS.D fd, fs MIPS32
ABS.PS fd, fs MIPS64

MIPS32 Release 2

Purpose:
To compute the absolute value of an FP value

Description: fd ~ abs(fs)

The absolute value of the value in FRRIis placed in FPRd. The operand and result are values in forrimt
ABS.PS takes the absolute value of the two values in FERRdependently, and ORs together any generated excep-
tions.

Causebits are ORed into thelag bits if no exception is taken.
This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fieldsfs andfd must specify FPRs valid for operands of tyfpet. If they are not valid, the result WNPRE-
DICTABLE .

The operand must be a value in fornfat; if it is not, the result iJUNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of ABS.PS iINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 33

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Add Word ADD

34

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADD
rs rt rd
000000 00000 100000
6 5 5 5 5 6
Format: ADDd, rs, rt MIPS32
Purpose:

To add 32-bit integers. If an overflow occurs, then trap.

Description: rd < rs+rt
The 32-bit word value in GPR is added to the 32-bit value in GP&Ro produce a 32-bit result.

* If the addition results in 32-bit 2’'s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

« If the addition does not overflow, the 32-bit result is placed into EPR

Restrictions:
None

Operation:

temp ~ (GPR[rs] 3|IGPR[rs] 310)+ (GPRIrt] 3|IGPR[] 35 0)
iftemp g3, #temp 3; then
SignalException(IntegerOverflow)
else
GPR[rd] < temp
endif
Exceptions:

Integer Overflow

Programming Notes:
ADDU performs the same arithmetic operation but does not trap on overflow.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Add ADD.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 ADD

fmt ft fs fd
010001 000000

6 5 5 5 5 6
Format: ADD.Sfd, fs, ft MIPS32
ADD.D fd, fs, ft MIPS32
ADD.PS fd, fs, ft MIPS64

MIPS32 Release 2

Purpose:
To add floating point values

Description: fd ~ fs +ft

The value in FPRt is added to the value in FPR The result is calculated to infinite precision, rounded by using to
the current rounding mode IRCSR and placed into FPRJ. The operands and result are values in forifinatt
ADD.PS adds the upper and lower halves of FiBRind FPRft independently, and ORs together any generated
exceptions.

Causebits are ORed into thelag bits if no exception is taken.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of tyfpat. If they are not valid, the result INPRE-
DICTABLE .

The operands must be values in fornfrat; if they are not, the result iI§SNPREDICTABLE and the value of the
operand FPRs becomg®\PREDICTABLE .

The result of ADD.PS iENPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR (fd, fmt, ValueFPR(fs, fmt) +mt ValueFPR(ft, fmt))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 35

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Add Immediate Word ADDI

36

31 26 25 21 20 16 15 0
ADDI
rs rt immediate
001000
6 5 5 16
Format: ADDI rt, rs, immediate MIPS32
Purpose:

To add a constant to a 32-bit integer. If overflow occurs, then trap

Description: it — rs +immediate
The 16-bit signeimmediatds added to the 32-bit value in GP&to produce a 32-bit result.

« If the addition results in 32-bit 2's complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

« If the addition does not overflow, the 32-bit result is placed into PR

Restrictions:
None

Operation:

temp « (GPR[rs] 31||GPRIrs] 31 o)+ sign_extend(immediate)
iftemp 3, #temp 3; then
SignalException(IntegerOverflow)
else
GPR[rt] ~ temp
endif
Exceptions:

Integer Overflow

Programming Notes:
ADDIU performs the same arithmetic operation but does not trap on overflow.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word ADDIU

31 26 25 21 20 16 15 0
ADDIU
rs rt immediate
001001
6 5 5 16
Format: ADDIU rt, rs, immediate MIPS32
Purpose:

To add a constant to a 32-bit integer

Description: rt < rs + immediate

The 16-bit signedmmediateis added to the 32-bit value in GRR and the 32-bit arithmetic result is placed into
GPRit.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ~ GPR[rs] + sign_extend(immediate)
GPR[rtf] « temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 37

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Add Unsigned Word ADDU

38

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADDU
rs rt rd
000000 00000 100001
6 5 5 5 5 6
Format: ADDU rd, rs, rt MIPS32
Purpose:

To add 32-bit integers

Description: rd « rs+1t

The 32-bit word value in GPR is added to the 32-bit value in GRRand the 32-bit arithmetic result is placed into
GPRrd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ~ GPR[rs] + GPR[r]
GPR[rd] < temp
Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Align Variable ALNV.PS

31 26 25 21 20 16 15 11 10 6 5 0
COP1X ALNV.PS
rs ft fs fd
010011 011110
6 5 5 5 5 6
Format: ALNV.PSfd, fs, ft, rs MIPS64

MIPS32 Release 2

Purpose:

To align a misaligned pair of paired single values

Description: fd — ByteAlign(rs 5 o , fs, ft)

FPRfsis concatenated with FPRand this value is funnel-shifted by GRB, g bytes, and written into FPRI. If
GPRrs, gis 0,fd receiveds. If GPRrs, g is 4, the operation depends on the current endianness.

Figure 3-1 illustrates the following example: for a big-endian operation and a byte alignment of 4, the uppefdhalf of
receives the lower half of the paired single valudsnand the lower half ofd receives the upper half of the paired
single value irt.

Figure 3-1 Example of an ALNV.PS Operation

fs ft

o
o

63 32 31 63 32 31
~
63 32 31 0

fd

The move is nonarithmetic; it causes no IEEE 754 exceptions.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 39

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Align Variable (cont.) ALNV.PS

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typ8 If they are not valid, the result iINPRE-
DICTABLE .

If GPRrs; g are non-zero, the results &/BIPREDICTABLE .
The result of this instruction ISINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

if GPR[rs] 5 o =0then
StoreFPR(fd, PS,ValueFPR(fs,PS))

else if GPR[rs] 20 Z4then
UNPREDICTABLE

else if BigEndianCPU then

StoreFPR(fd, PS, ValueFPR(fs, PS) 31.0 |l ValueFPR(ft,PS) 63.32)
else
StoreFPR(fd, PS, ValueFPR(ft, PS) 31.0 |l ValueFPR(fs,PS) 63.32)
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

ALNV.PS is designed to be used with LUXC1 to load 8 bytes of data from any 4-byte boundary. For example:
/* Copy T2 bytes (a multiple of 16) of data TO to T1, TO unaligned, T1 aligned.
Reads one dw beyond the end of TO. */

LUXC1 FO, O(TO) /* set up by reading 1st src dw */
LI T3,0 /* index into src and dst arrays */
ADDIU T4, TO, 8 /* base for odd dw loads */
ADDIU T5, T1, -8/* base for odd dw stores */

LOOP:
LUXC1 F1, T3(T4)
ALNV.PS F2, FO, F1, TO/* switch FO, F1 for little-endian */
SDC1 F2, T3(T1)
ADDIU T3, T3, 16
LUXC1 FO, T3(TO)
ALNV.PS F2, F1, FO, TO/* switch F1, FO for little-endian */
BNE T3, T2, LOOP
SDC1 F2, T3(T5)

DONE:

40 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Align Variable (cont.) ALNV.PS

ALNV.PS is also useful with SUXC1 to store paired-single results in a vector loop to a possibly misaligned address:

/* T1[i] = TO[i] + F8, TO aligned, T1 unaligned. */
CVT.PS.S F8, F8, F8/* make addend paired-single */

/* Loop header computes 1st pair into FO, stores high half if T1 */
/* misaligned */

LOOP:
LDC1 F2, T3(T4)/* get TO[i+2]/TO[i+3] */
ADD.PS F1, F2, F8/* compute T1[i+2)/T1[i+3] */
ALNV.PS F3, FO, F1, T1/* align to dst memory */

Suxc1 F3, T3(T1)/* store to T[i+0)/T1[i+1] */
ADDIU T3,16 [i=i+4%
LDC1 F2, T3(TO)/* get TO[i+0)/TO[i+1] */

ADD.PS FO, F2, F8/* compute T1[i+0)/T1[i+1] */
ALNV.PS F3, F1, FO, T1/* align to dst memory */
BNE T3, T2, LOOP

SUXC1 F3, T3(T5)/* store to T1[i+2]/T1[i+3] */

/* Loop trailer stores all or half of FO, depending on T1 alignment */

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 41

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

And

42

AND
31 26 25 21 20 16 15 11 10 0
SPECIAL 0 AND
rs rt rd
000000 00000 100100
6 5 5 5 5 6
Format: ANDrd, rs, rt MIPS32
Purpose:

To do a bitwise logical AND

Description: rd

« IS AND rt

The contents of GPRs are combined with the contents of GRRn a bitwise logical AND operation. The result is
placed into GPRd.

Restrictions:

None

Operation:
GPRrd]

Exceptions:

None

~ GPR[rs] and GPR]r]

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

And Immediate ANDI

31 26 25 21 20 16 15 0
ANDI
rs rt immediate
001100
6 5 5 16
Format: ANDI rt, rs, immediate MIPS32
Purpose:

To do a bitwise logical AND with a constant

Description: rt ~ rs AND immediate

The 16-bitimmediatds zero-extended to the left and combined with the contents of BRRa bitwise logical AND
operation. The result is placed into GRR

Restrictions:
None

Operation:
GPR[rf] < GPR]rs] and zero_extend(immediate)

Exceptions:
None

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 43

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Unconditional Branch B

44

31 26 25 21 20 16 15 0
BEQ 0 0
offset
000100 00000 00000
6 5 5 16
Format: B offset Assembly Idiom
Purpose:

To do an unconditional branch

Description: branch

B offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BEQ r0, r0, offset.

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.
Restrictions:
Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.
Operation:

I: target_offset ~ sign_extend(offset || O 2

I+1: PC ~ PC +target_offset
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch and Link BAL

31 26 25 21 20 16 15 0
REGIMM 0 BGEZAL
offset
000001 00000 10001
6 5 5 16
Format: BAL rs, offset Assembly Idiom
Purpose:

To do an unconditional PC-relative procedure call

Description: procedure_call

BAL offset is the assembly idiom used to denote an unconditional branch. The actual instruction is iterpreted by the
hardware as BGEZAL rO0, offset.

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.
Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

GPR 31 must not be used for the source registelbecause such an instruction does not have the same effect when
reexecuted. The result of executing such an instructithbNBPREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.
Operation:

I: target_offset — sign_extend(offset || 0 2)
GPR[31] - PC+8
I+1: PC ~ PC + target_offset

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeli®d8 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 45

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on FP False BC1F

46

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
cc offset
010001 01000
6 5 3 11 16
Format: BC1F offset (cc = 0 implied) MIPS32
BC1F cc, offset MIPS32
Purpose:

To test an FP condition code and do a PC-relative conditional branch

Description: if cc = 0 then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code bitCC s false (0), the program branches to the effective target address after the instruction in the delay
slot is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with (tihee/false) anachd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf andnd.

I: condition ~ FPConditionCode(cc) =0

target_offset — (offset 15) CPRLEN-(16+2) | offset || O 2
1+1: if condition then
PC — PC + target_offset
endif

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on FP False (cont.) BC1F

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range

Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal CplCond and theC bit in the FPControl/Statugegister. MIPS I, 1l, and Il architectures must have ©€
field set to O, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven nm@oadition Codebits to the original condition code 0. FP
compare and conditional branch instructions specify@badition Codébit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS 1, II, and Il architecturethere must be at least one instruction between the compare instruction that sets
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 47

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on FP False Likely BC1FL

48

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
cc offset
010001 01000 1
6 5 3 11 16
Format: BCI1FL offset (cc = 0 implied) MIPS32
BC1FL cc, offset MIPS32
Purpose:

To test an FP condition code and make a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch is taken.

Description: if cc = 0 then branch_likely

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. Ttme FP
dition Codebit CCis false (0), the program branches to the effective target address after the instruction in the delay
slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with (tihee/false) anachd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf andnd.
I: condition — FPConditionCode(cc) =0
target_offset — (offset 15) CPRLEN-(16+2) | offset || O 2
1+1: if condition then
PC ~ PC +target_offset
else
NullifyCurrentinstruction()
endif

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on FP False Likely (cont.) BC1FL

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC1F instruction instead.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal Cp1Cond and theC bit in the FPControl/Statugegister. MIPS 1, 11, and III architectures must have @€
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven nm@oadition Codebits to the original condition code 0. FP
compare and conditional branch instructions specifyGbadition Codebit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS Il andlll architectionr¢here must be at least one instruction between the compare instruction that
sets a condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 49

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on FP True BC1T

50

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
cc offset
010001 01000
6 5 3 11 16
Format: BCALT offset (cc = 0 implied) MIPS32
BC1T cc, offset MIPS32
Purpose:

To test an FP condition code and do a PC-relative conditional branch

Description: if cc = 1 then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code bitCCis true (1), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with (tihee/false) anachd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf andnd.

I: condition — FPConditionCode(cc) = 1

target_offset — (offset 15) CPRLEN-(16+2) | offset || O 2
1+1: if condition then
PC — PC + target_offset
endif

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on FP True (cont.) BC1T

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal CplCond and theC bit in the FPControl/Statugegister. MIPS I, 1l, and Il architectures must have ©€
field set to O, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven nm@oadition Codebits to the original condition code 0. FP
compare and conditional branch instructions specify@badition Codébit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS |, II, and Il architecturethere must be at least one instruction between the compare instruction that sets
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 51

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on FP True Likely BC1TL

52

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
cc offset
010001 01000 1
6 5 3 11 16
Format: BC1TL offset (cc = 0 implied) MIPS32
BC1TL cc, offset MIPS32
Purpose:

To test an FP condition code and do a PC-relative conditional branch; execute the instruction in the delay slot only if
the branch is taken.

Description: if cc = 1 then branch_likely

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. Ttme FP
dition Codebit CCis true (1), the program branches to the effective target address after the instruction in the delay
slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with (tihee/false) anachd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf andnd.
I: condition ~ FPConditionCode(cc) = 1
target_offset — (offset 15) CPRLEN-(16+2) | offset || O 2
1+1: if condition then
PC ~ PC +target_offset
else
NullifyCurrentinstruction()
endif

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on FP True Likely (cont.) BC1TL

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BCL1T instruction instead.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal Cp1Cond and theC bit in the FPControl/Statugegister. MIPS 1, 11, and III architectures must have @€
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven nm@oadition Codebits to the original condition code 0. FP
compare and conditional branch instructions specifyGbadition Codebit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS Il andlll architectionr¢here must be at least one instruction between the compare instruction that
sets a condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 53

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on COP2 False BC2F

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
cc offset
010010 01000
6 5 3 11 16
Format: BC2F offset (cc = 0 implied) MIPS32
BC2F cc, offset MIPS32
Purpose:

54

To test a COP2 condition code and do a PC-relative conditional branch

Description: if cc = 0 then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified bz C is false (0), the program branches to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with (tihee/false) anachd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf andnd.

I: condition ~ COP2Condition(cc) =0

target_offset — (offset ;5) CPRLEN-(16+2) | offset || O 2
1+1: if condition then
PC — PC + target_offset
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on COP2 False Likely BC2FL

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
cc offset
010010 01000 1
6 5 3 1 1 16
Format: BC2FL offset (cc = 0 implied) MIPS32
BC2FL cc, offset MIPS32
Purpose:

To test a COP2 condition code and make a PC-relative conditional branch; execute the instruction in the delay slot
only if the branch is taken.

Description: if cc = 0 then branch_likely

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified b C is false (0), the program branches to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:
Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with (tihee/false) anachd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for

tf andnd.
I: condition ~ COP2Condition(cc) =0
target_offset — (offset ;5) CPRLEN-(16+2) | offset || O 2
1+1: if condition then
PC ~ PC + target_offset
else
NullifyCurrentinstruction()
endif
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 55

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on COP2 False Likely (cont.) BC2FL

56

Exceptions:
Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2F instruction instead.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on COP2 True BC2T

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
cc offset
010010 01000
6 5 3 11 16
Format: BC2T offset (cc = 0 implied) MIPS32
BC2T cc, offset MIPS32
Purpose:

To test a COP2 condition code and do a PC-relative conditional branch

Description: if cc = 1 then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified bYCC s true (1), the program branches to the effective target address after the instruction in the
delay slot is executed.

Restrictions:
Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with (tihee/false) anachd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for

tf andnd.
I: condition ~ COP2Condition(cc) = 1
target_offset — (offset ;5) CPRLEN-(16+2) | offset || O 2
1+1: if condition then
PC — PC + target_offset
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 57

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on COP2 True Likely BC2TL

58

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
cc offset
010010 01000 1
6 5 3 1 1 16
Format: BC2TL offset (cc = 0 implied) MIPS32
BC2TL cc, offset MIPS32
Purpose:

To test a COP2 condition code and do a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch is taken.

Description: if cc = 1 then branch_likely

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified bYCC s true (1), the program branches to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with (tihee/false) anachd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf andnd.
I: condition ~ COP2Condition(cc) = 1
target_offset — (offset ;5) CPRLEN-(16+2) | offset || O 2
1+1: if condition then
PC ~ PC + target_offset
else
NullifyCurrentinstruction()
endif

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on COP2 True Likely (cont.) BC2TL

Exceptions:
Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2T instruction instead.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 59

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Equal BEQ

31 26 25 21 20 16 15 0
BEQ
rs rt offset
000100
6 5 5 16
Format: BEQrs, i, offset MIPS32
Purpose:

60

To compare GPRs then do a PC-relative conditional branch

Description: if rs = rt then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs and GPRt are equal, branch to the effective target address after the instruction in the delay
slot is executed.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ~ sign_extend(offset || O 2
condition ~ (GPR[rs] = GPRrt])
I+1: if condition then
PC ~ PC +target_offset
endif
Exceptions:

None

Programming Notes:

With the 18-hit signed instruction offset, the conditional branch rangel@8 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

BEQ r0, r0 offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Equal Likely BEQL

31 26 25 21 20 16 15 0
BEQL
rs rt offset
010100
6 5 5 16
Format: BEQL rs, rt, offset MIPS32
Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs = rt then branch_likely

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs and GPRt are equal, branch to the target address after the instruction in the delay slot is
executed. If the branch is not taken, the instruction in the delay slot is not executed.
Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:
I: target_offset ~ sign_extend(offset || O 2)
condition ~ (GPR[rs] = GPRrt])
1+1: if condition then
PC ~ PC +target_offset
else
NullifyCurrentinstruction()
endif
Exceptions:
None
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 61

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Equal Likely (cont.) BEQL

62

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BEQ instruction instead.

Historical Information:

In the MIPS | architecture, this instruction signaled a Reserved Instruction Exception.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero BGEZ

31 26 25 21 20 16 15 0
REGIMM BGEZ
rs offset
000001 00001
6 5 5 16
Format: BGEZ rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch

Description: ifrs =0 then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ~ sign_extend(offset || O 2
conditon ~ GPR[rs] =0 GPRLEN
I+1: if condition then
PC ~ PC +target_offset
endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 63

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero and Link BGEZAL

31 26 25 21 20 16 15 0
REGIMM BGEZAL
rs offset
000001 10001
6 5 5 16
Format: BGEZAL rs, offset MIPS32
Purpose:

64

To test a GPR then do a PC-relative conditional procedure call

Description: ifrs = 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.
Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

GPR 31 must not be used for the source registelbecause such an instruction does not have the same effect when
reexecuted. The result of executing such an instructithbNBPREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:
I: target_offset — sign_extend(offset || 0 2)
conditon — GPR[rs] =0 GPRLEN
GPR[31] ~ PC+8
1+1: if condition then
PC ~ PC +target_offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeli®8 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch and link.
BAL is used in a manner similar to JAL, but provides PC-relative addressing and a more limited target PC range.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero and Link Likely BGEZALL

31 26 25 21 20 16 15 0
REGIMM BGEZALL
rs offset
000001 10011
6 5 5 16
Format: BGEZALL rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Description: ifrs = 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.
Restrictions:

GPR 31 must not be used for the source registelbecause such an instruction does not have the same effect when
reexecuted. The result of executing such an instructithbNBREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:
I: target_offset — sign_extend(offset || 0 2)
conditon — GPR[rs] =0 GPRLEN
GPR[31] ~ PC+8
1+1: if condition then
PC — PC + target_offset
else
NullifyCurrentinstruction()
endif
Exceptions:
None
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 65

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero and Link Likely (con’t.) BGEZALL

66

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeli®8 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGEZAL instruction instead.

Historical Information:

In the MIPS | architecture, this instruction signaled a Reserved Instruction Exception.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero Likely BGEZL

31 26 25 21 20 16 15 0
REGIMM BGEZL
rs offset
000001 00011
6 5 5 16
Format: BGEZL rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs > 0 then branch_likely

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.
Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ~ sign_extend(offset || O 2
conditon ~ GPR[rs] =0 GPRLEN
1+1: if condition then
PC ~ PC +target_offset
else
NullifyCurrentinstruction()
endif

Exceptions:
None

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 67

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero Likely (cont.) BGEZL

68

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGEZ instruction instead.

Historical Information:

In the MIPS | architecture, this instruction signaled a Reserved Instruction Exception.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than Zero BGTZ

31 26 25 21 20 16 15 0
BGTZ 0
rs offset
000111 00000
6 5 5 16
Format: BGTZ rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs > 0 then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay slot is executed.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ~ sign_extend(offset || O 2
conditon GPR[rs]>0 GPRLEN
I+1: if condition then
PC ~ PC +target_offset
endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 69

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than Zero Likely BGTZL

70

31 26 25 21 20 16 15 0
BGTZL 0
rs offset
010111 00000
6 5 5 16
Format: BGTZL rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs > 0 then branch_likely

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not exe-
cuted.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:
I: target_offset ~ sign_extend(offset || O 2)
conditon GPR[rs]>0 GPRLEN
1+1: if condition then
PC ~ PC +target_offset
else
NullifyCurrentinstruction()
endif
Exceptions:
None

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than Zero Likely (cont.) BGTZL

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGTZ instruction instead.

Historical Information:

In the MIPS | architecture, this instruction signaled a Reserved Instruction Exception.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 71

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Less Than or Equal to Zero BLEZ

72

31 26 25 21 20 16 15 0
BLEZ 0
rs offset
000110 00000
6 5 5 16
Format: BLEZrs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch

Description: ifrs <0 then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ~ sign_extend(offset || O 2
conditon — GPR[rs] <0 GPRLEN
I+1: if condition then
PC ~ PC +target_offset
endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Less Than or Equal to Zero Likely BLEZL
31 26 25 21 20 16 15 0
BLEZL 0
rs offset
010110 00000
6 5 5 16

Format: BLEZL rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs

< 0 then branch_likely

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is
not executed.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of a branch or jump.

Operation:

1+1:

Exceptions:

None

target_offset
condition
if condition then

« GPR]rs]

PC ~ PC +target_offset

else

NullifyCurrentinstruction()

endif

~ sign_extend(offset || O
< 0 GPRLEN

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

73

Branch on Less Than or Equal to Zero Likely (cont.) BLEZL

74

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLEZ instruction instead.

Historical Information:

In the MIPS | architecture, this instruction signaled a Reserved Instruction Exception.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero BLTZ

31 26 25 21 20 16 15 0
REGIMM BLTZ
rs offset
000001 00000
6 5 5 16
Format: BLTZ rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs < 0 then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are less than zero (sign bitis 1), branch to the effective target address after the instruction in
the delay slot is executed.
Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:
I: target_offset ~ sign_extend(offset || O 2)
condiion ~ — GPR[rs]<0 GPRLEN
1+1: if condition then
PC ~ PC +target_offset
endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeli®8 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 75

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero and Link BLTZAL

31 26 25 21 20 16 15 0
REGIMM BLTZAL
rs offset
000001 10000
6 5 5 16
Format: BLTZAL rs, offset MIPS32
Purpose:

76

To test a GPR then do a PC-relative conditional procedure call

Description: if rs < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed.
Restrictions:

GPR 31 must not be used for the source registelbecause such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.
Operation:

I: target_offset — sign_extend(offset || 0 2)
condition — GPR[rs]<0 GPRLEN
GPR[31] ~ PC+8
1+1: if condition then
PC ~ PC +target_offset
endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeli®8 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero and Link Likely BLTZALL

31 26 25 21 20 16 15 0
REGIMM BLTZALL
rs offset
000001 10010
6 5 5 16
Format: BLTZALL rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Description: if rs < 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are less than zero (sign bitis 1), branch to the effective target address after the instruction in
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.
Restrictions:

GPR 31 must not be used for the source registelbecause such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:
I: target_offset — sign_extend(offset || 0 2)
conditon ~ GPR[rs]<0 GPRLEN
GPR[31] ~ PC+8
1+1: if condition then
PC — PC + target_offset
else
NullifyCurrentinstruction()
endif
Exceptions:
None
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 77

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero and Link Likely (cont.) BLTZALL

78

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeli®8 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZAL instruction instead.

Historical Information:

In the MIPS | architecture, this instruction signaled a Reserved Instruction Exception.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero Likely BLTZL

31 26 25 21 20 16 15 0

REGIMM BLTZL
rs offset
000001 00010
6 5 5 16
Format: BLTZL rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs < 0 then branch_likely

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are less than zero (sign bitis 1), branch to the effective target address after the instruction in

the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

1+1:

Exceptions:

None

target_offset
condition
if condition then

~ GPR[rs] <0

~ sign_extend(offset || O

GPRLEN

PC ~ PC +target_offset

else

NullifyCurrentinstruction()

endif

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

79

Branch on Less Than Zero Likely (cont.) BLTZL

80

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZ instruction instead.

Historical Information:

In the MIPS | architecture, this instruction signaled a Reserved Instruction Exception.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Not Equal BNE

31 26 25 21 20 16 15 0
BNE
rs rt offset
000101
6 5 5 16
Format: BNE rs, rt, offset MIPS32
Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: ifrs # rt then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs and GPRt are not equal, branch to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ~ sign_extend(offset || O 2
condition « (GPR[rs] # GPR]rt])
I+1: if condition then
PC ~ PC +target_offset
endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 81

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Not Equal Likely BNEL

82

31 26 25 21 20 16 15 0
BNEL
rs rt offset
010101
6 5 5 16
Format: BNEL rs, rt, offset MIPS32
Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs # rt then branch_likely

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs and GPRt are not equal, branch to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.
Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:
I: target_offset ~ sign_extend(offset || O 2)
condition « (GPR[rs] # GPR]rt])
I+1: if condition then
PC ~ PC +target_offset
else
NullifyCurrentinstruction()
endif
Exceptions:
None

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Branch on Not Equal Likely (cont.) BNEL

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BNE instruction instead.

Historical Information:

In the MIPS | architecture, this instruction signaled a Reserved Instruction Exception.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 83

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Breakpoint BREAK

84

31 26 25 6 5 0
SPECIAL BREAK
code
000000 001101
6 20 6
Format: BREAK MIPS32
Purpose:

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
codefield is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:
None

Operation:
SignalException(Breakpoint)

Exceptions:
Breakpoint

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Compare C.cond.fmt

31 26 25 21 20 16 15 11 10 8 7 6 5 4 3 0
COP1 A| FC
fmt ft fs cc 0 cond
010001 0 11
6 5 5 5 3 1 1 2 4
Format: C.cond.Sfs, ft (cc = 0 implied) MIPS32
C.cond.D fs, ft (cc = 0 implied) MIPS32
C.cond.PS fs, ft(cc = 0 implied) MIPS64
MIPS32 Release 2
C.cond.S cc, fs, ft MIPS32
C.cond.D cc, fs, ft MIPS32
C.cond.PS cc, fs, ft MIPS64

MIPS32 Release 2

Purpose:
To compare FP values and record the Boolean result in a condition code

Description: cc ~ fs compare_cond ft

The value in FPRsis compared to the value in FRRthe values are in formdint The comparison is exact and nei-
ther overflows nor underflows.

If the comparison specified lmond, 4 is true for the operand values, the result is true; otherwise, the result is false. If
no exception is taken, the result is written into condition €@gtrue is 1 and false is 0.

c.cond.PS compares the upper and lower halves offEBRd FPRt independently and writes the results into condi-
tion codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operation of the
instruction isSUNPREDICTABLE .

If one of the values is an SNaN, oong; is set and at least one of the values is a QNaN, an Invalid Operation condi-
tion is raised and the Invalid Operation flag is set inE@SR If the Invalid OperatiorEnablebit is set in theFCSR

no result is written and an Invalid Operation exception is taken immediately. Otherwise, the Boolean result is written
into condition code€CC.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is always true
and the others are false. The familiar relationsgmeater than less thanandequal In addition, the IEEE floating

point standard defines the relatiobnorderedwhich is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -O0.

The comparison condition is a logical predicate, or equation, of the ordering relations sleds disan or equal

equal not less thanor unordered or equalCompare distinguishes among the 16 comparison predicates. The Bool-
ean result of the instruction is obtained by substituting the Boolean value of each ordering relation for the two FP val-
ues in the equation. If thequalrelation is true, for example, then all four example predicates above yield a true
result. If theunorderedrelation is true then only the final predicataprdered or equalyields a true result.

Logical negation of a compare result allows eight distinct comparisons to test for the 16 predicates as shown in . Each
mnemonic tests for both a predicate and its logical negation. For each mnesumjzaretests the truth of the first
predicate. When the first predicate is true, the result is true as shown in the “If Predicate Is True” column, and the sec-
ond predicate must be false, and vice versa. (Note that the False predicate is never true and False/True do not follow
the normal pattern.)

The truth of the second predicate is the logical negation of the instruction result. After a compare instruction, test for
the truth of the first predicate can be made with the Branch on FP True (BCL1T) instruction and the truth of the second
can be made with Branch on FP False (BC1F).

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 85

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Compare (cont.) C.cond.fmt

Table 3-25 shows another set of eight compare operations, distinguishewbgaalue of 1 and testing the same 16

conditions. For these additional comparisons, if at least one of the operands is a NaN, including Quiet NaN, then an
Invalid Operation condition is raised. If the Invalid Operation condition is enabled iIR@&R an Invalid Operation
exception occurs.

Table 3-25 FPU Comparisons Without Special Operand Exceptions

Comparison CC
Instruction Comparison Predicate Result Instruction
Relation InvOp Condition
Values Excp. Field
If if
Cond Name of Predicate and Predicate | QNaN
Mnemonic | Logically Negated Predicate (Abbreviation)| >| <| =| ? Is True ? 3 2.0
False [this predicate is always False] FIF| F| F
F F 0
True (T) T T T| T
Unordered H B F T T
UN 1
Ordered (OR) T T T H F
Equal FI F T H T
EQ 2
Not Equal (NEQ) T T H T F
Unordered or Equal - F T[T T
UEQ 3
Ordered or Greater Than or Less Than (OGL) T| T| F| F F
No 0
Ordered or Less Than F |T |[F |F T
OLT 4
Unordered or Greater Than or Equal (UGE) TIF|T| T F
Unordered or Less Than F |T |F|T T
ULT 5
Ordered or Greater Than or Equal (OGE) T|F| T| F F
Ordered or Less Than or Equal FIT|T|F T
OLE 6
Unordered or Greater Than (UGT) TIF|F|T F
Unordered or Less Than or Equal FIT|T|T T
ULE 7
Ordered or Greater Than (OGT) T|F|F|F F
Key: ? =unordered > =greater than < =less than= isequal T =True, F = False
86 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Compare (cont.) C.cond.fmt
Table 3-26 FPU Comparisons With Special Operand Exceptions for QNaNs
Comparison CC Instructio
Instruction Comparison Predicate Result n
Relation Condition
_ Values If Inv Op Field
Cond Name of Predicate and Predicate | Excp If
Mnemonic Logically Negated Predicate (Abbreviation) | >| <| = Is True QNaN? 3 2.0
Signaling False [this predicate always False] F| F F
SF F 0
Signaling True (ST) T T T 7
Not Greater Than or Less Than or Equal F|F T T
NGLE 1
Greater Than or Less Than or Equal (GLE) T T F F
Signaling Equal H B T H T
SEQ 2
Signaling Not Equal (SNE) r' T F T F
Not Greater Than or Less Than FIF [T |T T
NGL 3
Greater Than or Less Than (GL) T |T |F |F F
Yes 1
Less Than H T H H T
LT 4
Not Less Than (NLT) T K T T F
Not Greater Than or Equal F [T [F [T T
NGE 5
Greater Than or Equal (GE) T |F [T |F F
Less Than or Equal F T T F T
LE 6
Not Less Than or Equal (NLE) ™ F [F [T F
Not Greater Than F T T T T
NGT 7
Greater Than (GT) T F F F F
Key: ? =unordered > =greater than < =less than=isequal T =True, F =False
87

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Compare (cont.) C.cond.fmt

88

Restrictions:

The fieldsfs andft must specify FPRs valid for operands of tyipg; if they are not valid, the result IINPREDICT-
ABLE.

The operands must be values in fornfrat; if they are not, the result iI§SNPREDICTABLE and the value of the
operand FPRs becomg®dlPREDICTABLE .

The result of C.cond.PS ISNPREDICTABLE if the processor is executing in 16 FP registers mode, or if the condi-
tion code number is odd.

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or
QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then
less ~ false
equal false
unordered — true
if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond 3 and (QNaN(ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then
SignalException(InvalidOperation)

endif

else
less ~ ValueFPR(fs, fmt) < fmt ValueFPR(ft, fmt)
equal ~ ValueFPR(fs, fmt) = tmt ValueFPR(ft, fmt)
unordered -~ false

endif

condition —~ (cond , and less) or (cond 1 and equal)

or (cond o and unordered)
SetFPConditionCode(cc, condition)

For c.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each half as an
independent single-precision values. Exceptions on the two halves are logically ORed and reported together. The
results of the lower half comparison are written to condition code CC; the results of the upper half comparison are
written to condition code CC+1.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Compare (cont.) C.cond.fmt

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation

Programming Notes:

FP computational instructions, including compare, that receive an operand value of Signaling NaN raise the Invalid
Operation condition. Comparisons that raise the Invalid Operation condition for Quiet NaNs in addition to SNaNs
permit a simpler programming model if NaNs are errors. Using these compares, programs do not need explicit code
to check for QNaNs causing thumorderedrelation. Instead, they take an exception and allow the exception handling
system to deal with the error when it occurs. For example, consider a comparison in which we want to know if two
numbers are equal, but for whighorderedwould be an error.

comparisons using explicit tests for QNaN

c.eq.d $f2,$f4# check for equal

nop

bclt L2 #itis equal

c.un.d $f2,$f4# it is not equal,

but might be unordered

bclt ERROR # unordered goes off to an error handler

not-equal-case code here

equal-case code here
L2:
#
comparison using comparisons that signal QNaN
c.seq.d $f2,$f4 # check for equal
nop
bclt L2 #itis equal
nop
it is not unordered here

not-equal-case code here

equal-case code here

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 89

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation CACHE

31 26 25 21 20 16 15 0
CACHE
base op offset
101111
6 5 5 16
Format: CACHE op, offset(base) MIPS32
Purpose:

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 3-27 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address

The effective address is used to address the cache. It is implementation dependent
Address Virtual whether an address translation is performed on the effective address (with the
possibility that a TLB Refill or TLB Invalid exception might occur)

The effective address is translated by the MMU to a physical address. The physical

Address Physical address is then used to address the cache
The effective address is translated by the MMU to a physical address. It is
implementation dependent whether the effective address or the translated physical
address is used to index the cache.
Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

Index N/A OffsetBit ~ Log2(BPT)

IndexBit ~ Log2(CS/A)

WayBit ~ IndexBit + Ceiling(Log2(A))
Way « Addr waygit-1..IndexBit

Index — Addr IndexBit-1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and the Index value
fully specifies the cache tag. This is shown symbolically in the figure below.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation CACHE

Figure 3-2 Usage of Address Fields to Select Index and Way

’._ WayBit;._ IndexBit ’._ OffsetBit
0

Unused Way Index byte index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a byproduct of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions should must be triggered by an Index Load Tag or Index
Store tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal ADEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:
Table 3-28 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache
2#00 | Primary Instruction

2#01 D Primary Data or Unified Primary

2#10 T Tertiary

2#11 S Secondary

Bits [20:18] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 91

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation

Table 3-29 Encoding of Bits [20:18] of the CACHE Instruction

CACHE

Code

Caches

Name

Effective
Address
Operand

Type

Operation

Compliance

2#000

Index Invalidate

Index

Set the state of the cache block at the specif
index to invalid.

This required encoding may be used by
software to invalidate the entire instruction
cache by stepping through all valid indices.

Required

Index Writeback
Invalidate / Index
Invalidate

Index

ST

Index Writeback
Invalidate / Index
Invalidate

Index

For a write-back cache: If the state of the cac
block at the specified index is valid and dirty
write the block back to the memory address
specified by the cache tag. After that operati
is completed, set the state of the cache block

bn
to

Required

invalid. If the block is valid but not dirty, set the
state of the block to invalid.

For a write-through cache: Set the state of t
cache block at the specified index to invalid

This required encoding may be used by
software to invalidate the entire data cache
stepping through all valid indices. Note that

Index Store Tag should be used to initialize the

cache at powerup.

oy

Optional

2#001

All

Index Load Tag

Index

Read the tag for the cache block at the specifi
index into theTagLoandTagHi Coprocessor 0
registers. If thdataLoandDataHi registers
are implemented, also read the data
corresponding to the byte index into the
DatalLoandDataHi registers. This operation
must not cause a Cache Error Exception.

The granularity and alignment of the data reg
into theDatalL.oandDataHi registers is
implementation-dependent, but is typically th
result of an aligned access to the cache,
ignoring the appropriate low-order bits of the
byte index.

ad

e

h

Recommended

92

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 3-29 Encoding of Bits [20:18] of the CACHE Instruction

Effective
Address
Operand
Code Caches Name Type Operation Compliance
Write the tag for the cache block at the
specified index from th@&agLoandTagHi
Coprocessor 0 registers. This operation must
not cause a Cache Error Exception.
2#010 All Index Store Tag Index | This required encoding may be used by Required
software to initialize the entire instruction or
data caches by stepping through all valid
indices. Doing so requires that thegLoand
TagHi registers associated with the cache bg
initialized first.
| Available for implementation-dependent
Implementation o operation. ;
2#011 All Dependent Unspecified Optional
Required
; . Instruction Cache
: : If the cache block contains the specified (A
1D Hit Invalidate Address address, set the state of the cache block to EF?codlng Orgy%l
invalid. ecommernde
2#100 otherwise
This required encoding may be used by
software to invalidate a range of addresses
from the instruction cache by stepping through
the address range by the line size of the caghe.
S, T Hit Invalidate Address Optional
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 93

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 3-29 Encoding of Bits [20:18] of the CACHE Instruction

Effective
Address
Operand
Code Caches Name Type Operation Compliance
Fill the cache from the specified address.
| Fill Address Recommended
Hit Writeback For a write-back cache: If the cache block
D Invalidate / Hit Address contains the specified address and it is valig Required
Invalidate and dirty, write the contents back to memory.
2#101 After that operation is completed, set the state
of the cache block to invalid. If the block is
valid but not dirty, set the state of the block te
invalid.
For a write-through cache: If the cache block
contains the specified address, set the statg of
Hit Writeback the cache block to invalid.
S, T ln\ﬁl}gﬁ(tj%t/emt Address | Tpg required encoding may be used by Optional
software to invalidate a range of addresses
from the data cache by stepping through the
address range by the line size of the cache.
D Hit Writeback Address | ¢ the cache block contains the specified Recommended
address and it is valid and dirty, write the
24110 contents back to memory. After the operation|is
completed, leave the state of the line valid, but
clear the dirty state. For a write-through cache,
ST Hit Writeback Address | this operation may be treated as a nop. Optional

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 3-29 Encoding of Bits [20:18] of the CACHE Instruction

Code

Caches

Name

Effective
Address
Operand

Type

Operation

Compliance

2#111

Fetch and Lock

Address

If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to val
and locked. If the cache already contains th
specified address, set the state to locked. In
set-associative or fully-associative caches, t
way selected on a fill from memory is
implementation dependent.

The lock state may be cleared by executing
Index Invalidate, Index Writeback Invalidate
Hit Invalidate, or Hit Writeback Invalidate
operation to the locked line, or via an Index
Store Tag operation to the line that clears th
lock bit. Note that clearing the lock state via|
Index Store Tag is dependent on the
implementation-dependent cache tag and ca
line organization, and that Index and Index
Writeback Invalidate operations are dependg
on cache line organization. Only Hit and Hit
Writeback Invalidate operations are general
portable across implementations.

It is implementation dependent whether a
locked line is displaced as the result of an
external invalidate or intervention that hits o
the locked line. Software must not depend g
the locked line remaining in the cache if an
external invalidate or intervention would
invalidate the line if it were not locked.

Itisimplementation dependent whether a Fefj
and Lock operation affects more than one lin
For example, more than one line around thg
referenced address may be fetched and lock
It is recommended that only the single line

containing the referenced address be affect

T o

he

[}

che

nt Recommended

y

3_)

D O

ed.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

95

96

Perform Cache Operation (cont.) CACHE

Restrictions:
The operation of this instruction WNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction ISNDEFINED if the operaation requires an address, and that address is uncache-
able.

The operation of the instruction BNPREDICTABLE if the cache line that contains the CACHE instruction is the
target of an invalidate or a writeback invalidate.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:
vAddr ~ GPR[base] + sign_extend(offset)
(pAddr, uncached) — AddressTranslation(vAddr, DataReadReference)

CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception
Coprocessor Unusable Exception
Address Error Exception

Cache Error Exception

Bus Error Exception

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Fixed Point Ceiling Convert to Long Fixed Point CEIL.L.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 CEIL.L

fmt fs fd
010001 00000 001010
6 5 5 5 5 6

Format: CEIL.L.S fd,fs MIPS64
MIPS32 Release 2
CEIL.L.D fd,fs MIPS64

MIPS32 Release 2

Purpose:
To convert an FP value to 64-bit fixed point, rounding up

Description: fd ~ convert_and_round(fs)

The value in FPRs, in formatfmt, is converted to a value in 64-bit long fixed point format and rounding towerd +
(rounding mode 2). The result is placed in FBR

When the source value is Infinity, NaN, or rounds to an integer outside the ra??ge 23.1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, a d the Invalid Operation flag is s€étQSRdf
the Invalid OperatiorEnablebit is set in theFCSR no result is written tdd and an Invalid Operation exception is

taken immediately. Otherwise, the default rest#t-2, is written tdd.

Restrictions:

The fieldsfs andfd must specify valid FPRgs for typefmtandfd for long fixed point; if they are not valid, the result
is UNPREDICTABLE .

The operand must be a value in fornfrat; if it is not, the result iJJNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of this instruction ISINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 97

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Fixed Point Ceiling Convert to Long Fixed Point (cont.) CEIL.L.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

98 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Ceiling Convert to Word Fixed Point

CEIL.W.fmt

31 26 25 21 20 16 15 11 10
COP1 0 CEIL.W
fmt fs fd
010001 00000 001110
6 5 5 5 5 6
Format: CEILW.S fd,fs MIPS32
CEILW.D fd,fs MIPS32

Purpose:
To convert an FP value to 32-bit fixed point, rounding up

Description: fd ~ convert_and_round(fs)

The value in FPRs, in formatfmt, is converted to a value in 32-bit word fixed point format and rounding towerd +

(rounding mode 2). The result is placed in FBR

When the source value is Infinity, NaN, or rounds to an integer outside the ra?’f]ge P11, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is sSEQSERE

the Invalid OperatiorEnablebit is set in theFCSR no result is written tdd and an Invalid Operation exception is

taken immediately. Otherwise, the default restit-2, is written tdd.

Restrictions:

The fieldsfs andfd must specify valid FPRds for typefmtandfd for word fixed point; if they are not valid, the result

is UNPREDICTABLE .

The operand must be a value in fornfrat; if it is not, the result idJJNPREDICTABLE and the value of the operand

FPR becomesNPREDICTABLE .

Operation:
StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact, Overflow

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

99

Move Control Word From Floating Point CFC1

31 26 25 21 20 16 15 11 10 0
COP1 CF 0
rt fs
010001 00010 000 0000 0000
6 5 5 5 11
Format: CFC1rt,fs MIPS32
Purpose:

To copy a word from an FPU control register to a GPR

Description: it~ FP_Control[fs]
Copy the 32-bit word from FP (coprocessor 1) control regisieto GPRrt.

Restrictions:

There are a few control registers defined for the floating point unit. The rediNFREDICTABLE if fs specifies a
register that does not exist.

Operation:

if fs = 0 then
temp ~ FIR
elseif fs = 25 then
temp < 02*||FCSR 31 55 |[FCSR 43
elseif fs = 26 then
temp ~ 0 |[FCSR 171, [0 °|IFCSR 4, [|0 2
elseif fs = 28 then
temp ~ 0?°||FCSR 137 [|0 *|IFCSR 4 ||[FCSR 1,
elseif fs = 31 then
temp ~ FCSR
else
temp ~ UNPREDICTABLE
endif
GPR[rtf] «~ temp

100 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Control Word From Floating Point (cont.) CFC1

Exceptions:
Coprocessor Unusable, Reserved Instruction

Historical Information:

For the MIPS |, Il and Il architectures, the contents of GPRre UNPREDICTABLE for the instruction immedi-
ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS 1, II, 1ll, or IV.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 101

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Control Word From Coprocessor 2 CFC2

102

31 26 25 21 20 16 15 11 10 0
COP2 CF
rt Impl
010010 00010
6 5 5 16
Format: CFC2rt, rd MIPS32

The syntax shown above is an example using CFC1 as a model. The specific syntax is implementation dependent.

Purpose:
To copy a word from a Coprocessor 2 control register to a GPR

Description: it ~ CP2CCR[Impl]

Copy the 32-bit word from the Coprocessor 2 control register denoted bgnthidield. The interpretation of thienpl
field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.
Restrictions:

The result i9JNPREDICTABLE if Impl specifies a register that does not exist.

Operation:

temp ~ CP2CCR[Impl]
GPR[rt] < temp

Exceptions:
Coprocessor Unusable, Reserved Instruction

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Count Leading Ones in Word CLO

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 0 CLO
rs rt rd
011100 00000 100001
6 5 5 5 5 6
Format: CLO rd, rs MIPS32
Purpose:

To Count the number of leading ones in a word

Description: rd « count_leading_ones rs

Bits 31..0 of GPRs are scanned from most significant to least significant bit. The number of leading ones is counted
and the result is written to GRR. If all of bits 31..0 were set in GRR, the result written to GPRI is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt andrd fields of the instruction. The operation of the instructio/SPREDICTABLE if the rt andrd fields of the
instruction contain different values.

Operation:

temp ~ 32
foriin31..0
if GPR[rs] ; =0then
temp ~ 31-i
break
endif
endfor
GPR[rd] « temp

Exceptions:
None

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 103

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

104

Count Leading Zeros in Word CLz

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 0 CLzZ
rs rt rd
011100 00000 100000
6 5 5 5 5 6
Format: CLZ rd, rs MIPS32
Purpose

Count the number of leading zeros in a word

Description: rd « count_leading_zeros rs

Bits 31..0 of GPRs are scanned from most significant to least significant bit. The number of leading zeros is counted
and the result is written to GRR. If no bits were set in GPR, the result written to GPR is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt andrd fields of the instruction. The operation of the instructio/SPREDICTABLE if the rt andrd fields of the
instruction contain different values.

Operation:

temp ~ 32
foriin31..0
if GPR[rs] ; =1then
temp ~ 31-i
break
endif
endfor
GPR[rd] « temp

Exceptions:
None

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Coprocessor Operation to Coprocessor 2 COP2

31 26 25 24 0
COP2 (6{0)
cofun
010010 1
6 1 25
Format: COP2 func MIPS32
Purpose:

To performance an operation to Coprocessor 2

Description: CoprocessorOperation(2, cofun)

An implementation-dependent operation is performance to Coprocessor 2, withfthevalue passed as an argu-

ment. The operation may specify and reference internal coprocessor registers, and may change the state of the copro-
cessor conditions, but does not modify state within the processor. Details of coprocessor operation and internal state
are described in the documentation for each Coprocessor 2 implementation.

Restrictions:

Operation:

CoprocessorOperation(2, cofun)

Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 105

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Control Word to Floating Point CTC1

106

31 26 25 21 20 16 15 11 10 0
COP1 CT 0
rt fs
010001 00110 000 0000 0000
6 5 5 5 11
Format: CTC1 rt, fs MIPS32
Purpose:

To copy a word from a GPR to an FPU control register

Description: FP_Control[fs] ot
Copy the low word from GPR into the FP (coprocessor 1) control register indicatefs.by

Writing to the floating poinControl/Statugegister, the=CSR causes the appropriate exception if &gusebit and

its correspondingnablebit are both set. The register is written before the exception occurs. WritiRgX&Rto set a
cause bit whose enable bit is already set, or writingENRto set an enable bit whose cause bit is already set causes
the appropriate exception. The register is written before the exception occurs.

Restrictions:

There are a few control registers defined for the floating point unit. The rediNFREDICTABLE if fs specifies a
register that does not exist.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Control Word to Floating Point (cont.) CTC1

Operation:

temp ~ GPRIrt] 319
if fs = 25 then
iftemp 3, #02*then
UNPREDICTABLE
else
FCSR —temp 7 ;1 [[FCSR o4 |[temp (|[FCSR 25 o
endif
elseif fs = 26 then
iftemp 5,5 19 #0then
UNPREDICTABLE
else
FCSR — FCSR3; 15 |ltemp 4712 [[FCSR 4117 |l
tempg » |[FCSR 4 g
endif
elseif fs = 28 then
iftemp 5, 13 #0then
UNPREDICTABLE
else
FCSR « FCSR3; 5 |[temp L |[FCSR 53 1> |[ltemp 43 7
[[FCSR ¢ |ltemp 19
endif
elseif fs = 31 then
iftemp 5, 18 #0then
UNPREDICTABLE
else
FCSR — temp
endif
else
UNPREDICTABLE
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical Information:

For the MIPS |, Il and IIl architectures, the contents of floating point control redistee undefined for the instruc-
tion immediately following CTC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS 1, II, 1, or IV.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 107

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Control Word to Coprocessor 2 CTC2
31 26 25 21 20 16 15 11 10 0
COP2 CT
rt Impl
010010 00110
6 5 5 16
Format: CTC2rt, rd MIPS32

108

The syntax shown above is an example using CTC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from a GPR to a Coprocessor 2 control register

Description: CP2CCR[Impl] « rt

Copy the low word from GPRt into the Coprocessor 2 control register denoted byttt field. The interpretation
of thelmpl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result i9JNPREDICTABLE if rd specifies a register that does not exist.

Operation:
temp ~ GPR[r]
CP2CCR[Impl] ~ temp
Exceptions:
Coprocessor Unusable, Reserved Instruction

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Convert to Double Floating Point CVT.D.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 CVT.D

fmt fs fd
010001 00000 100001
6 5 5 5 5 6

Format: CVT.D.Sfd,fs MIPS32
CVT.D.Wfd, fs MIPS32
CVT.D.Lfd, fs MIPS64

MIPS32 Release 2

Purpose:
To convert an FP or fixed point value to double FP

Description: fd ~ convert_and_round(fs)

The value in FPRs, in formatfmt, is converted to a value in double floating point format and rounded according to
the current rounding mode IRCSR The result is placed in FPRI. If fmtis S or W, then the operation is always
exact.

Restrictions:

The fieldsfs andfd must specify valid FPRs¥s for type fmt andfd for double floating point—if they are not valid,
the result i’UNPREDICTABLE .

The operand must be a value in fornfrat; if it is not, the result iJJNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

For CVT.D.L, the result of this instruction WINPREDICTABLE if the processor is executing in 16 FP registers
mode.

Operation:
StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 109

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Convert to Long Fixed Point CVT.L.fmt

110

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 CVT.L

fmt fs fd
010001 00000 100101
6 5 5 5 5 6
Format: CVT.L.Sfd,fs MIPS64
MIPS32 Release 2
CVT.L.Dfd, fs MIPS64
MIPS32 Release 2
Purpose:

To convert an FP value to a 64-bit fixed point

Description: fd ~ convert_and_round(fs)

Convert the value in formdmt in FPRfs to long fixed point format and round according to the current rounding
mode inNFCSR The result is placed in FFR.

When the source value is Infinity, NaN, or rounds to an integer outside the ra??ge 23.1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is sét@5tke
If the Invalid OperatiorEnablebit is set in theFCSR no result is written tdd and an Invalid Operation exception is

taken immediately. Otherwise, the default resi#t-2, is written tdd.

Restrictions:

The fieldsfs andfd must specify valid FPRs+¥s for type fmt andfd for long fixed point—if they are not valid, the
result iSUNPREDICTABLE .

The operand must be a value in fornfrat; if it is not, the result i)JJNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of this instruction ISINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Convert to Long Fixed Point, cont. CVT.L.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 111

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Convert Pair to Paired Single CVTPS.S

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd CVT.PS
010001 10000 100110
6 5 5 5 5 6
Format: CVT.PS.Sfd, fs, ft MIPS64

MIPS32 Release 2

Purpose:
To convert two FP values to a paired single value

Description: fd —fs 330 [lft 31,0

The single-precision values in FHRandft are written into FPRd as a paired-single value. The value in FiRREs
written into the upper half, and the value in FPR written into the lower half.

fs ft
31 0 31 0
fd
63 32 31 0

CVT.PS.S is similar to PLL.PS, except that it expects operands of f8imstead oPS

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs andft must specify FPRs valid for operands of tyfdf they are not valid, the result INPREDICT-
ABLE.

The operand must be a value in forn&if it is not, the result i9UNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of this instruction ISNPREDICTABLE if the processor is executing in 16 FP registers mode.

112 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Convert Pair to Paired Single (cont.) CVTPS.S

Operation:
StoreFPR(fd, S, ValueFPR(fs,S) || ValueFPR(ft,S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 113

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Convert to Single Floating Point CVT.S.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 CVT.S

fmt fs fd
010001 00000 100000
6 5 5 5 5 6

Format: CVT.S.Dfd,fs MIPS32
CVT.S.\WTd, fs MIPS32
CVT.S.Lfd, fs MIPS64

MIPS32 Release 2

Purpose:
To convert an FP or fixed point value to single FP

Description: fd ~ convert_and_round(fs)

The value in FPRs, in formatfmt,is converted to a value in single floating point format and rounded according to the
current rounding mode IRCSR The result is placed in FAR

Restrictions:

The fieldsfs andfd must specify valid FPRs¥sfor typefmtandfd for single floating point. If they are not valid, the
result iSUNPREDICTABLE .

The operand must be a value in fornfrat; if it is not, the result i)JNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

For CVT.S.L, the result of this instruction ISINPREDICTABLE if the processor is executing in 16 FP registers
mode.

Operation:
StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

114 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Convert Pair Lower to Single Floating Point CVTS.PL

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 CVT.S.PL
fs fd
010001 10110 00000 101000
6 5 5 5 5 6
Format: CVT.S.PLfd,fs MIPS64

MIPS32 Release 2

Purpose:
To convert one half of a paired single FP value to single FP

Description: fd ~ convert_and_round(fs)

The lower paired single value in FPR, in format PS,is converted to a value in single floating point format and
rounded according to the current rounding mode@SR The result is placed in FPH. This instruction can be used
to isolate the lower half of a paired single value.

Restrictions:

The fieldsfs andfd must specify valid FPRs¥sfor type PSandfd for single floating point. If they are not valid, the
result iSUNPREDICTABLE .

The operand must be a value in fornR8 if it is not, the result iJJNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of CVT.S.PL iNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR (fd, S, ConvertFmt(ValueFPR(fs, PS), PL, S))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 115

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Convert Pair Upper to Single Floating Point CVT.S.PU

116

31 26 25 21 20 16 15 11 10 6 5 0

COP1 fmt 0 CVT.S.PU

fs fd
010001 10110 00000 100000
6 5 5 5 5 6
Format: CVT.S.PUfd, fs MIPS64
MIPS32 Release 2
Purpose:

To convert one half of a paired single FP value to single FP

Description: fd ~ convert_and_round(fs)

The upper paired single value in FAR in format PS,is converted to a value in single floating point format and
rounded according to the current rounding mode@SR The result is placed in FPH. This instruction can be used
to isolate the upper half of a paired single value.

Restrictions:

The fieldsfs andfd must specify valid FPRs¥sfor type PSandfd for single floating point. If they are not valid, the
result iSUNPREDICTABLE .

The operand must be a value in fornR8 if it is not, the result iJJNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of CVT.S.PU iI§NPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR (fd, S, ConvertFmt(ValueFPR(fs, PS), PU, S))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Convert to Word Fixed Point CVT.W.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 CVT.W

fmt fs fd
010001 00000 100100
6 5 5 5 5 6
Format: CVT.W.Sfd,fs MIPS32
CVT.W.D fd, fs MIPS32
Purpose:

To convert an FP value to 32-bit fixed point

Description: fd ~ convert_and_round(fs)

The value in FPRs, in formatfmt,is converted to a value in 32-bit word fixed point format and rounded according to
the current rounding mode FCSR The result is placed in FFR.

When the source value is Infinity, NaN, or rounds to an integer outside the ra?’f]ge P11, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is sSEQSERE
the Invalid OperatiorEnablebit is set in theFCSR no result is written tdd and an Invalid Operation exception is

taken immediately. Otherwise, the default restit-2, is written tdd.

Restrictions:

The fieldsfs andfd must specify valid FPRs¥s for type fmt andfd for word fixed point—if they are not valid, the
result iSUNPREDICTABLE .

The operand must be a value in fornfrat; if it is not, the result idJJNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

Operation:
StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact, Overflow

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 117

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

118

Debug Exception Return DERET

31 26 25 24 6 5 0
COPO CcoO 0 DERET
010000 1 000 0000 0000 0000 0000 011111
6 1 19 6
Format: DERET EJTAG
Purpose:

To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained inEHePCregister. DERET does not execute the next instruction (i.e. it has
no delay slot).

Restrictions:

A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTCO or a DMTCO instruction, a
CPO hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

This instruction is legal only if the processor is executing in Debug Mode.The operation of the procéfs@Es
FINED if a DERET is executed in the delay slot of a branch or jump instruction.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Debug Exception Return (cont.) DERET

Operation:

Debugpy < 0

Debugigx; « 0

if IsMIPS16Implemented() then
PC — DEPC3 ; |10
ISAMode ~ DEPC,

else
PC ~ DEPC

endif

ClearHazards()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 119

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Disable Interrupts DI

120

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0
COPO MFMCO rt 12 0 scl O 0
0100 00 01011 01100 000 00 0] 00 000
6 5 5 5 5 1 2 3
Format: DI MIPS32 Release 2
DI rt MIPS32 Release 2
Purpose:

To return the previous value of ti8tatusregister and disable interrupts. If Dl is specified without an argument, GPR
rO is implied, which discards the previous value of the Status register.

Description: rt — Status; Status E <O

The current value of th&tatusregister is loaded into general registerThe Interrupt Enable (IE) bit in th8tatus
register is then cleared.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:
This operation specification is for the general interrupt enable/disable operation, witbftelel as a variable. The
individual instructions DI and EI have a specific value forsitiéeld.

data « Status
GPR[rf] <« data
Status g <O

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Disable Interrupts, cont. DI

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of &atlisigmto a GPR, clear-
ing the IE bit, and writing the result back 8atus Unlike the multiple instruction sequence, however, the DI instruc-
tion can not be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 121

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Divide Word

122

DIV
31 26 25 21 20 16 15 0
SPECIAL 0 DIV
Is rt
000000 00 0000 0000 011010
6 5 5 10 6
Format. DIV rs, 1t MIPS32
Purpose:

To divide a 32-bit signed integers

Description: (HI, LO) — rs/rt

The 32-bit word value in GPRs is divided by the 32-bit value in GPR, treating both operands as signed values.
The 32-bit quotient is placed into special regitt®rand the 32-bit remainder isplaced into special regisiter

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPRt is zero, the arithmetic result valuedUSIPREDICTABLE .

Operation:

q < GPR[rs] 3109 divGPR[t] 319

LO ~q

r HGPR[rS] 31.0 mod GPR[rt] 31.0

H

Exceptions:

None

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Divide Word (cont.) DIV

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero divi-
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception withdefield value to signal

the problem to the system software.

As an example, the C programming language in a URiBvironment expects division by zero to either terminate

the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if a zero is detected.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to ré&or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS IIl, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
guent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 123

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Divide DIV.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 DIV
fmt ft fs fd
010001 000011
6 5 5 5 5 6
Format: DIV.Sfd, fs, ft MIPS32
DIV.D fd, fs, ft MIPS32
Purpose:

To divide FP values

Description: fd ~ fs/ft

The value in FPRs s divided by the value in FPR. The result is calculated to infinite precision, rounded according
to the current rounding mode RCSR and placed into FPfRl. The operands and result are values in fofmat
Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of tyip#; if they are not valid, the result INPRED-
ICABLE .

The operands must be values in fornfrat; if they are not, the result i§NPREDICTABLE and the value of the
operand FPRs becom&g®PREDICTABLE .

Operation:
StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR(ft, fmt))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

124 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Divide Unsigned Word DIVU
31 26 25 21 20 16 15 0
SPECIAL 0 DIVU
Is rt
000000 00 0000 0000 011011
6 5 5 10 6
Format: DIVUrs, rt MIPS32

Purpose:

To divide a 32-bit unsigned integers

Description: (HI, LO) — rs/rt

The 32-bit word value in GPRs is divided by the 32-bit value in GPR, treating both operands as unsigned values.
The 32-bit quotient is placed into special regitt®rand the 32-bit remainder is placed into special redititer

No arithmetic exception occurs under any circumstances.

Restrictions:
If the divisor in GPRt is zero, the arithmetic result valuedUSIPREDICTABLE .

Operation:
d « (O]l GPRIrs] 31.0) div (0 || GPRIr] 31.0)
r (O]l GPRIrs] 31.0) mod (0 || GPR[rt] 31.0)

LO - sign_extend(q 310)
HI ~ sign_extend(r 31.0)

Exceptions:
None

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of

the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

125

Execution Hazard Barrier EHB

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 3 SLL
000000 00000 00000 00000 00011 000000
6 5 5 5 5 6
Format: EHB MIPS32 Release 2
Purpose:

To stop instruction execution until all execution hazards have been cleared.

Description:

EHB is the assembly idiom used to denote execution hazard barrier. The actual instruction is interpreted by the hard-
ware as SLL r0, r0, 3.

This instruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execu-
tion hazards have been cleared. Other than those that might be created as a consequence of segipg tBes

are no execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by
previous instructions are cleared for instructions executed immediately following the EHB, even if the EHB is exe-
cuted in the delay slot of a branch or jump. The EHB instruction does not clear instruction hazards - such hazards are
cleared by the JALR.HB, JR.HB, and ERET instructions.

Restrictions:

None

Operation:

ClearExecutionHazards()

Exceptions:
None

Programming Notes:

In MIPS32 Release 2 implementations, this instruction resolves all execution hazards. On a superscalar processor,
EHB has alters the instruction issue behavior in a manner identical to SSNOP. For backward compatibility with
Release 1 implementations, the last of a sequence of SSNOPs can be replaced by an EHB. In Release 1 implementa-
tions, the EHB will be treated as an SSNOP, thereby preserving the semantics of the sequence. In Release 2 imple-
mentations, replacing the final SSNOP with an EHB should have no performance effect because a properly sized
sequence of SSNOPs will have already cleared the hazard. As EHB becomes the standard in MIPS implementations,
the previous SSNOPs can be removed, leaving only the EHB.

126 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Enable Interrupts El

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0
COPO MFMCO rt 12 0 scl O 0
0100 00 01011 01100 000 00 1| 00 000
6 5 5 5 5 1 2 3
Format: EI MIPS32 Release 2
El rt MIPS32 Release 2
Purpose:

To return the previous value of ti&tatusregister and enable interrupts. If El is specified without an argument, GPR
rO is implied, which discards the previous value of the Status register.

Description: rt ~ Status; Status E <1

The current value of th&tatusregister is loaded into general register rt. The Interrupt Enable (IE) bit iiSthris
register is then set.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:
This operation specification is for the general interrupt enable/disable operation, witbftelel as a variable. The
individual instructions DI and EI have a specific value forsitiéeld.

data « Status
GPR[rtf] « data
Status g ~ 1

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 127

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Enable Interrupts, cont. El

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of &adisinto a GPR, set-
ting the IE bit, and writing the result back ®tatus Unlike the multiple instruction sequence, however, the El
instruction can not be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

128 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exception Return ERET

31 26 25 24 6 5 0
COPO CcoO 0 ERET
010000 1 000 0000 0000 0000 0000 011000
6 1 19 6
Format: ERET MIPS32
Purpose:

To return from interrupt, exception, or error trap.

Description:

ERET clears execution and instruction hazards, conditionally restores $SR§€tm SRSCiggin a Release 2

implementation, and returns to the interrupted instruction at the completion of interrupt, exception, or error process-
ing. ERET does not execute the next instruction (i.e., it has no delay slot).

Restrictions:

The operation of the processolWNDEFINED if an ERET is executed in the delay slot of a branch or jump instruc-
tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0O
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the ERET returns.

In a Release 2 implementation, ERET does not restore SRS§tOM SRSCthggif Statugey = 1, or if Statugr, =

1 because any exception that sets Statpso 1 (Reset, Soft Reset, NMI, or cache error) does not save SR
SRSCthgg If software sets Statgg, to 1, it must be aware of the operation of an ERET that may be subsequently
executed.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 129

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exception Return ERET

Operation:

if Status gr_= 1 then
temp ~ ErrorEPC
Status ERL < 0
else
temp ~ EPC
Status EXL < 0
if (ArchitectureRevision = 2) and (SRSCtl Hss > 0) and (Status gev = O)then
SRSCtl cg5 « SRSCtl pgg
endif
endif
if IsMIPS16Implemented() then
PC —~temp 335 |0
ISAMode ~ temp g

else

PC —~ temp
endif
LLbit <O

ClearHazards()

Exceptions:
Coprocessor Unusable Exception

130 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Extract Bit Field EXT

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 < . msbd Isb EXT
011111 (size-1) (pos) 000000
6 5 5 5 5 6
Format: extrt, rs, pos, size MIPS32 Release 2
Purpose:

To extract a bit field from GPR and store it right-justified into GPiR

Description: it~ ExtractField(rs, mshd, Isb)

The bit field starting at biposand extending fosizebits is extracted from GPRs and stored zero-extended and
right-justified in GPRrt. The assembly language argumepts and sizeare converted by the assembler to the
instruction fieldsmsbd(the most significant bit of the destination field in GRIR in instruction bits 15..11, andb
(least significant bit of the source field in GRIR in instruction bits 10..6, as follows:

msbd < size-1
Isb « pos

The values oposandsizemust satisfy all of the following relations:

0 <pos <32
0 <size <32
0 <post+size <32

Figure 3-3 shows the symbolic operation of the instruction.

31 pos+sizepos+size-1 pos pos-1 0
Isb+msbd+1lsb+mshd Isb Isb-1

GPRTs | 1IKL | mNop QRST
Initial 32-(pos+size) size
Value 32-(Isb+msbd+1) msbd-+1

31 size size-1 0

msbd+1mshbd
0 MNOP
GPR rt - -
Final Value 32-size size
32-(mshd+1) mshd+1

Figure 3-3 Operation of the EXT Instruction

Restrictions:
In implementations prior to Release of the architecture, this instruction resulted in a Reserved Instruction Exception.
The operation iYNPREDICTABLE if Isb+rmsbd> 31.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 131

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Extract Bit Field, cont. EXT

Operation:

if (Isb + msbhd) > 31) then
UNPREDICTABLE
endif
temp . 032(MSPAL) || GPRIrs] pdeish.Isb
GPR[rt] < temp

Exceptions:
Reserved Instruction

132 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Floor Convert to Long Fixed Point FLOOR.L.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 FLOOR.L

fmt fs fd
010001 00000 001011
6 5 5 5 5 6

Format: FLOOR.L.Sfd, fs MIPS64
MIPS32 Release 2
FLOOR.L.D fd, fs MIPS64

MIPS32 Release 2

Purpose:
To convert an FP value to 64-bit fixed point, rounding down

Description: fd ~ convert_and_round(fs)

The value in FPRs, in formatfmt, is converted to a value in 64-bit long fixed point format and rounded toweard -
(rounding mode 3). The result is placed in FBR

When the source value is Infinity, NaN, or rounds to an integer outside the ra??ge 23.1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is sSEQSER#
the Invalid Operation Enable bit is set in tRE€SR no result is written tdd and an Invalid Operation exception is

taken immediately. Otherwise, the default resi#t-2, is written tdd.

Restrictions:

The fieldsfs andfd must specify valid FPRs+¥s for type fmt andfd for long fixed point—if they are not valid, the
result iSUNPREDICTABLE .

The operand must be a value in fornfrat; if it is not, the result i)JJNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of this instruction ISINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 133

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Floor Convert to Long Fixed Point (cont.) FLOOR.L.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

134 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Floor Convert to Word Fixed Point FLOOR.W.fmt
31 26 25 21 20 16 15 11 10 0
COP1 0 FLOOR.W
fmt fs fd
010001 00000 001111
6 5 5 5 5 6
Format: FLOOR.W.S fd,fs MIPS32
FLOOR.W.D fd, fs MIPS32

Purpose:
To convert an FP value to 32-bit fixed point, rounding down

Description: fd ~ convert_and_round(fs)

The value in FPRs, in formatfmt, is converted to a value in 32-bit word fixed point format and rounded toward —

(rounding mode 3). The result is placed in FBR

When the source value is Infinity, NaN, or rounds to an integer outside the ra?’f]ge P11, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is sSEQSERE

the Invalid OperatiorEnablebit is set in theFCSR no result is written tdd and an Invalid Operation exception is

taken immediately. Otherwise, the default restit-2, is written tdd.

Restrictions:

The fieldsfs andfd must specify valid FPRs¥s for type fmt andfd for word fixed point—if they are not valid, the

result iSUNPREDICTABLE .

The operand must be a value in fornfrat; if it is not, the result idJJNPREDICTABLE and the value of the operand

FPR becomesNPREDICTABLE .

Operation:
StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact, Overflow

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

135

Insert Bit Field INS

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 " o msb Isb INS
011111 (pos+size-1) (pos) 000100
6 5 5 5 5 6
Format: insrt,rs, pos, size MIPS32 Release 2
Purpose:

To merge a right-justified bit field from GRRinto a specified field in GPR.

Description: it InsertField(rt, rs, msb, Isbh)

The right-mostsizebits from GPRrs are merged into the value from GRRstarting at bit positiorpos The result
isplaced back in GPRt. The assembly language argumepts and sizeare converted by the assembler to the
instruction fieldsmsb(the most significant bit of the field), in instruction bits 15..11, #sti(least significant bit of
the field), in instruction bits 10..6, as follows:

msb ~ pos+size-1
Isb « pos

The values oposandsizemust satisfy all of the following relations:

0 <pos <32
0 <size <32
0 <post+size <32

Figure 3-4 shows the symbolic operation of the instruction.

size size-1
31 msb-Isb+1msb-Isb 0
GPRrs ABCD EFGH
32-size size
32-(msb-Isb+1) msb-Isb+1
31 pos+sizepos+size-1 pospos-1 0
msb+1msb Isb Isb-1
GPR 1t | 1IKL | wmnop , QRST
Initial 32-(pos+size) size pos
Value 32-(msb+1) msb-Ish+1 Isb
31 pos+size pos+size-1 pos-1 0
msb+1 msb Isb-1
1IKL | EFGH QRST
GPR 1t - -
Final Value 32-(pos+size) size pos
32-(msb+1) msb-Isb+1 Isb
Figure 3-4 Operation of the INS Instruction
136 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Insert Bit Field, cont. INS

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The operation iYNPREDICTABLE if Isb>msh

Operation:

if Isb > msb) then
UNPREDICTABLE
endif
GPR[t] « GPRI[r] 31 msbr1 IGPRIrS] mspisb.o [IGPRIM sp1.0

Exceptions:
Reserved Instruction

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 137

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Jump J

31 26 25 0
J
instr_index
000010
6 26
Format: Jtarget MIPS32
Purpose:

To branch within the current 256 MB-aligned region

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is thstr_indexfield shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

1+1: PC PCGPRLEN—l..ZS ” inStr_indeX ” 0 2

Exceptions:
None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

138 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Jump and Link JAL

31 26 25 0
JAL
instr_index
000011
6 26
Format: JAL target MIPS32
Purpose:

To execute a procedure call within the current 256 MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is thstr_indexfield shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.
Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: GPR[31] - PC+8

I+1: PC « PCgprLEN-1.28 |l instr_index || 0 2
Exceptions:
None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 139

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Jump and Link Register JALR

140

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL 0 JALR

rs rd hint
000000 00000 001001
6 5 5 5 5 6
Format: JALR rs (rd = 31 implied) MIPS32
JALR rd, rs MIPS32
Purpose:

To execute a procedure call to an instruction address in a register

Description: rd « return_addr, PC — TS

Place the return address link in GRIR The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16e ASE:

» Jump to the effective target address in GBRExecute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself.

For processors that do implement the MIPS16e ASE:

» Jump to the effective target address in GBRExecute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Set tB& Modebit to the value in GPRs bit 0. Bit O of the target
address is always zero so that no Address Exceptions occur when bit O of the source register is one

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JALR. In Release
2 of the architecture, bit 10 of the hint field is used to encode a hazard barrier. See the JALR.HB instruction descrip-
tion for additional information.

Restrictions:

Register specifiens andrd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such an instructiddNS?REDICTABLE . This restriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

The effective target address in GPRmust be naturally-aligned. For processors that do not implement the MIPS16e
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16e ASE, if bit O is zero and bit
1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Jump and Link Register, cont. JALR

Operation:

I: temp — GPR[rs]
GPR[rd] -~ PC+8
I+1: if Configl cp=0 then
PC ~ temp
else

PC — temp gprien-1.1 |10
ISAMode « temp g

endif

Exceptions:
None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link; all other link instructions use
GPR 31. The default register for GRR if omitted in the assembly language instruction, is GPR 31.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 141

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Jump and Link Register with Hazard Barrier JALR.HB

31 26 25 21 20 16 15 11 10 9 6 5 0
SPECIAL 0 Any other legal JALR
rs rd 1 hint value
000000 00000 001001
6 5 5 5 1 4 6
Format: JALR.HB rs (rd = 31 implied) MIPS32 Release 2
JALR.HB rd, rs MIPS32 Release 2

Purpose:

To execute a procedure call to an instruction address in a register and clear all execution and instruction hazards

Description: rd « return_addr, PC ~ T8, clear execution and instruction hazards

Place the return address link in GRIR The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16 ASE:

» Jump to the effective target address in GBRExecute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself.

For processors that do implement the MIPS16 ASE:

» Jump to the effective target address in GBRExecute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Set tB& Modebit to the value in GPRs bit 0. Bit O of the target
address is always zero so that no Address Exceptions occur when bit O of the source register is one

JALR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALR.HB instruction jumps. An equivalent bar-
rier is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0 is
enabled, whereas JALR.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JALR.HB uses bit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

Restrictions:

Register specifiens andrd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such an instructiddNS®’REDICTABLE . This restriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

The effective target address in GPRmust be naturally-aligned. For processors that do not implement the MIPS16
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit O is zero and bit 1
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

142 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Jump and Link Register with Hazard Barrier, cont. JALR.HB

Restrictions, cont.:

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
hasUNPREDICTABLE behavior until the instruction hazard has been cleared with JALR.HB, JR.HB, ERET, or
DERET. Further, the operationitNPREDICTABLE if the mapping of the current instruction stream is modified.

JALR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALR.HB. Only
hazards created by instructions executed before the JALR.HB are cleared by the JALR.HB.

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp — GPR][rs]
GPR[rd] ~ PC+8
I+1: if Configl cp=0then
PC ~ temp
else

PC — temp gprien-1.1 110
ISAMode « temp g

endif
ClearHazards()

Exceptions:
None

Programming Notes:

JALR and JALR.HB are the only branch-and-link instructions that can select a register for the return link; all other
link instructions use GPR 31. The default register for GBRf omitted in the assembly language instruction, is
GPR 31.

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 143

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Jump and Link Register with Hazard Barrier, cont. JALR.HB

Example: Clearing hazards due to an ASID change
/*
* Code used to modify ASID and call a routine with the new
* mapping established.
*
* a0 = New ASID to establish
*al = Address of the routine to call

*/
mfcO vO, CO_EntryHi /* Read current ASID */
li vl, ~M_EntryHIASID /* Get negative mask for field */
and vO, vO, v1 /* Clear out current ASID value */
or v0, vO, a0 /* OR in new ASID value */
mtcO vO, CO_EntryHi [* Rewrite EntryHi with new ASID */
jalr.nb a1 * Call routine, clearing the hazard */
nop

144 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Jump Register JR

31 26 25 21 20 11 10 6 5 0
SPECIAL 0 JR
rs hint
000000 00 0000 0000 001000
6 5 10 5 6
Format: JRrs MIPS32
Purpose:

To execute a branch to an instruction address in a register

Description: PC « rs

Jump to the effective target address in GiBRExecute the instruction following the jump, in the branch delay slot,
before jumping.

For processors that implement the MIPS16e ASE, seltSheModebit to the value in GPRs bit 0. Bit O of the target
address is always zero so that no Address Exceptions occur when bit O of the source register is one

Restrictions:

The effective target address in GPRmust be naturally-aligned. For processors that do not implement the MIPS16e
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16e ASE, if bit O is zero and bit
1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JR. In Release 2
of the architecture, bit 10 of the hint field is used to encode an instruction hazard barrier. See the JR.HB instruction
description for additional information.

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I temp ~ GPRJrs]
I+1: if Configl 5= 0 then
PC -~ temp
else
PC — temp gprien-1.1 110
ISAMode « temp g
endif

Exceptions:
None

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 145

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Jump Register, cont. JR

Programming Notes:

Software should use the value 31 for tisdfield of the instruction word on return from a JAL, JALR, or BGEZAL,
and should use a value other than 31 for remaining uses of JR.

146 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Jump Register with Hazard Barrier JR.HB

31 26 25 21 20 11 10 9 6 5 0
SPECIAL 0 Any other legal JR
rs 1 hint value
000000 00 0000 0000 001000
6 5 10 1 4 6
Format: JR.HBrs MIPS32 Release 2
Purpose:

To execute a branch to an instruction address in a register and clear all execution and instruction hazards.

Description: PC « rs, clear execution and instruction hazards

Jump to the effective target address in GiBRExecute the instruction following the jump, in the branch delay slot,
before jumping.

JR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JR.HB instruction jumps. An equivalent barrier
is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0 is
enabled, whereas JR.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JR.HB uses bit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

For processors that implement the MIPS16 ASE, set$eModebit to the value in GPRs bit 0. Bit O of the target
address is always zero so that no Address Exceptions occur when bit O of the source register is one.

Restrictions:

The effective target address in GPRmust be naturally-aligned. For processors that do not implement the MIPS16
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit O is zero and bit 1
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
hasUNPREDICTABLE behavior until the hazard has been cleared with JALR.HB, JR.HB, ERET, or DERET. Fur-
ther, the operation IINPREDICTABLE if the mapping of the current instruction stream is modified.

JR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALR.HB. Only haz-
ards created by instructions executed before the JR.HB are cleared by the JALR.HB.

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 147

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Jump Register with Hazard Barrier, cont. JR.HB

Operation:

I: temp ~ GPRJrs]
I+1: if Configl cp=0then
PC ~ temp
else

PC ~ temp gprien-1.1 110
ISAMode « temp g

endif
ClearHazards()

Exceptions:
None

Programming Notes:

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*

* Routine called to modify ASID and return with the new
* mapping established.

*

* a0 = New ASID to establish

*/
mfcO vO, CO_EntryHi [* Read current ASID */
li vl, ~M_EntryHIASID /* Get negative mask for field */
and vO, vO, vl /* Clear out current ASID value */
or v0, vO, a0 /* OR in new ASID value */
mtcO vO, CO_EntryHi [* Rewrite EntryHi with new ASID */
jr.hb ra [* Return, clearing the hazard */
nop

Example: Making a write to the instruction stream visible

/*
* Routine called after new instructions are written to
* make them visible and return with the hazards cleared.

*/
{Synchronize the caches - see the SYNCI and CACHE instructions}
sync /* Force memory synchronization */
jr.hb ra /* Return, clearing the hazard */
nop
148 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Jump Register with Hazard Barrier, cont. JR.HB

Example: Clearing instruction hazards in-line

la AT, 10f
jr.hb AT /* Jump to next instruction, clearing */
nop [* hazards */
10:
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 149

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Byte LB

31 26 25 21 20 16 15 0
LB
base rt offset
100000
6 5 5 16
Format: LB rt, offset(base) MIPS32
Purpose:

To load a byte from memory as a signed value

Description: it — memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR. The 16-bit signedffsetis added to the contents of GBRseto form the effective address.
Restrictions:

None

Operation:

vAddr < sign_extend(offset) + GPR[base]

(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)

pAddr — pAddr pgize.1.2 || (PAddr 1 o Xor ReverseEndian 2)
memword— LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)

byte — VAddr ; o xor BigEndianCPU

GPR[r] « sign_extend(memword 7igspyte gtbyte)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

150 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Byte Unsigned LBU

31 26 25 21 20 16 15 0
LBU
base rt offset
100100
6 5 5 16
Format: LBU rt, offset(base) MIPS32
Purpose:

To load a byte from memory as an unsigned value

Description: it — memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR. The 16-bit signedffsetis added to the contents of GBRseto form the effective address.
Restrictions:

None

Operation:

vAddr < sign_extend(offset) + GPR[base]

(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)

pAddr — pAddr pgize.1.2 || (PAddr 1 o Xor ReverseEndian 2)
memword— LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)

byte — VAddr ; o xor BigEndianCPU

GPR[r] «~ zero_extend(memword 7igspyte gtbyte)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 151

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Doubleword to Floating Point LDC1
31 26 25 21 20 16 15 0
LDC1
base ft offset
110101
6 5 5 16
Format: LDCL1 ft, offset(base) MIPS32

152

Purpose:

To load a doubleword from memory to an FPR

Description: ft ~ memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR. The 16-bit signedffsetis added to the contents of GBRseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddiege 0 (not doubleword-aligned).

Operation:

vAddr — sign_extend(offset) + GPR[base]

ifvAddr , o, #0%then
SignalException(AddressError)
endif

(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
paddr ~ paddr xor ((BigEndianCPU xor ReverseEndian) [0 2)
memlisw ~ LoadMemory(CCA, WORD, pAddr, vAddr, DATA)

paddr ~ paddr xor 2#100

memmsw— LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
StoreFPR(ft, UNINTERPRETED_WORD, memlsw)
StoreFPR(ft+1, UNINTERPRETED_WORD, memmsw)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Doubleword to Coprocessor 2 LDC2

31 26 25 21 20 16 15 0
LDC2
base rt offset
110110
6 5 5 16
Format: LDC2 rt, offset(base) MIPS32
Purpose:

To load a doubleword from memory to a Coprocessor 2 register

Description: it~ memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 registerThe 16-bit signeaffsetis added to the contents of GRRseto form the
effective address.

Restrictions:
An Address Error exception occurs if EffectiveAddgege 0 (not doubleword-aligned).

Operation:

vAddr — sign_extend(offset) + GPR[base]

ifvAddr , o # 03 then SignalException(AddressError) endif

(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)

paddr ~ paddr xor ((BigEndianCPU xor ReverseEndian) |0 2)
memlsw ~ LoadMemory(CCA, WORD, pAddr, vAddr, DATA)

paddr ~ paddr xor 2#100

memmsw— LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)

memlsw

memmsw

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 153

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Doubleword Indexed to Floating Point LDXC1

31 26 25 21 20 16 15 11 10 6 5 0
COP1X 0 LDXC1
base index fd
010011 00000 000001
6 5 5 5 5 6
Format: LDXC1 fd, index(base) MIPS64

MIPS32 Release 2

Purpose:
To load a doubleword from memory to an FPR (GPR+GPR addressing)

Description: fd ~ memory[base+index]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPRI. The contents of GPRdexand GPRbaseare added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddiege 0 (not doubleword-aligned).

Operation:

vAddr ~ GPRI[base] + GPR[index]
ifvAddr , o #0°then
SignalException(AddressError)

endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
paddr ~ paddr xor ((BigEndianCPU xor ReverseEndian) 10 2)

memlisw ~ LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
paddr ~ paddr xor 2#100

memmsw. LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
StoreFPR(ft, UNINTERPRETED_WORD, memlsw)
StoreFPR(ft+1, UNINTERPRETED_WORD, memmsw)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

154 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Halfword LH

31 26 25 21 20 16 15 0
LH
base rt offset
100001
6 5 5 16
Format: LH rt, offset(base) MIPS32
Purpose:

To load a halfword from memory as a signed value

Description: it — memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GIPiRThe 16-bit signeaffsetis added to the contents of GRRaseto form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[base]
if vAddr ¢ # 0 then
SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddr pgize_1.»> || (PAddr 1.0 Xor (ReverseEndian || 0))
memword ~ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ~ VAddr 1 o xor (BigEndianCPU || 0)
GPR[rtf] ~ sign_extend(memword i5igspyte. g*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 155

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Halfword Unsigned LHU

156

31 26 25 21 20 16 15 0
LHU
base rt offset
100101
6 5 5 16
Format: LHU rt, offset(base) MIPS32
Purpose:

To load a halfword from memory as an unsigned value

Description: it — memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GRRThe 16-bit signeaffsetis added to the contents of GRRaseto form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[base]
if vAddr ¢ # 0 then
SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddr pgize_1.»> || (PAddr 1.0 Xor (ReverseEndian || 0))
memword ~ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ~ VAddr 1 o xor (BigEndianCPU || 0)
GPR[rtf] ~ zero_extend(memword isigwpyte. g*byte)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Linked Word LL

31 26 25 21 20 16 15 0
LL
base rt offset
110000
6 5 5 16
Format: LL rt, offset(base) MIPS32
Purpose:

To load a word from memory for an atomic read-modify-write

Description: it — memory[base+offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPRt. The 16-bit signedffsetis added to the contents of GB&seto form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and 1/0O devices sharing the location; if it is not, the
result inUNPREDICTABLE . Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is
non-zero, an Address Error exception occurs.

Operation:

vAddr — sign_extend(offset) + GPR[base]
ifvAddr 1 o #0 2then
SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
memword — LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ~ memword
LLbit <1

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 157

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Linked Word (cont.) LL

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:
There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

158 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Upper Immediate LUI
31 26 25 21 20 16 15 0
LUI 0
rt immediate
001111 00000
6 5 5 16
Format: LUI rt,immediate MIPS32

Purpose:

To load a constant into the upper half of a word

Description: rt

— immediate || O

The 16-bitimmediateis shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is
placed into GPRt.

Restrictions:

None

Operation:
GPR]r]

Exceptions:

None

~ immediate || O

16

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

159

Load Doubleword Indexed Unaligned to Floating Point LUXC1

31 26 25 21 20 16 15 11 10 6 5 0
COP1X 0 LUXC1
base index fd
010011 00000 000101
6 5 5 5 5 6
Format: LUXC1 fd, index(base) MIPS64

MIPS32 Release 2

Purpose:
To load a doubleword from memory to an FPR (GPR+GPR addressing), ignoring alignment

Description: fd — memory[(base+index) pgize-1.3 |

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetched and
placed into the low word of coprocessor 1 general regfstefhe contents of GPidexand GPRbaseare added to
form the effective address. The effective address is doubleword-aligned; EffectiveAdgsessgnored.

Restrictions:
The result of this instruction ISNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vAddr ~ (GPR[base]+GPRJindex]) 63.3 IO 3

(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)

paddr ~ paddr xor ((BigEndianCPU xor ReverseEndian) 102)
memlisw ~ LoadMemory(CCA, WORD, pAddr, vAddr, DATA)

paddr ~ paddr xor 2#100

memmsw LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
StoreFPR(ft, UNINTERPRETED_WORD, memlsw)

StoreFPR(ft+1, UNINTERPRETED_WORD, memmsw)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Watch

160 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Word LW
31 26 25 21 20 16 15 0
LW
base rt offset
100011
6 5 5 16
Format: LW rt, offset(base) MIPS32

Purpose:

To load a word from memory as a signed value

Description: it — memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched,
sign-extended to the GPR register length if necessary, and placed imtGRR 16-bit signeaffsetis added to the

contents of GPRaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[base]
ifvAddr ;o #0 2then

SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
memword— LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ~ memword

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

161

Load Word to Floating Point LWC1

162

31 26 25 21 20 16 15 0
LWC1
base rt offset
110001
6 5 5 16
Format: LWCL1 ft, offset(base) MIPS32
Purpose:

To load a word from memory to an FPR

Description: ft ~ memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of coprocessor 1 general regitefhe 16-bit signedffsetis added to the contents of
GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddrege 0 (not word-aligned).

Operation:

vAddr — sign_extend(offset) + GPR[base]
ifvAddr ;o #0 ?then
SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)

memword — LoadMemory(CCA, WORD, pAddr, vAddr, DATA)

StoreFPR(ft, UNINTERPRETED_WORD,
memword)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Word to Coprocessor 2 LWC2

31 26 25 21 20 16 15 0

LWC2
base rt offset
110010
6 5 5 16

Format: LWC2 rt, offset(base) MIPS32

Purpose:

To load a word from memory to a COP2 register

Description: rt

~ memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general registéhe 16-bit signeaffsetis added to the con-
tents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddiege 0 (not word-aligned).

Operation:

vAddr

endif

(pAddr, CCA)

memword — LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)

~ sign_extend(offset) + GPR[base]
ifvAddr 1, o #0?then
SignalException(AddressError)

CPR[2,rt,0] ~ memword

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

~ AddressTranslation (vAddr, DATA, LOAD)

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

163

Load Word Left LWL

164

31 26 25 21 20 16 15 0
LWL
base rt offset
100010
6 5 5 16
Format: LWL rt, offset(base) MIPS32
Purpose:

To load the most-significant part of a word as a signed value from an unaligned memory address

Description: it « rt MERGE memory[base+offset]

The 16-bit signeaffsetis added to the contents of GRRseto form an effective addreg&ffAddr). EffAddris the
address of the most-significant of 4 consecutive bytes forming a Wydn memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes W is in the aligned word containing theffAddr. This part ofW s loaded into the
most-significant (left) part of the word in GRR The remaining least-significant part of the word in GRS
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A pai 8fbytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination register word
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remainder of
the unaligned word

Figure 3-5 Unaligned Word Load Using LWL and LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
| 0| 1] 2 3| 4| 5 6| 7| 8| 9| Memory initial contents
| e| f | g | h | GPR 24 Initial contents
| 2 | 3 | g | h | After executind WL $24,2($0)
| 2| 3] 4] 5| Then aftet WR $24,5($0)

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Word Left (con’t) LWL

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAdgt and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

Figure 3-6 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 < big-endian
|1 o] k[L] offset (vAddy g le|f]g]|n]
3 2 1 0 < little-endian most least
most least — significance —
— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian VAdd{ o Little-endian
I J K L 0 L|f g n
J K L|nh 1 K L|lg n
K L|g h 2 J K L|h
L]t g h 3 I J K L
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 165

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Word Left (con’t) LWL

Restrictions:
None

Operation:

vAddr ~ sign_extend(offset) + GPR[base]
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddr pgize.1.o || (PAddr 1.0 Xor ReverseEndian 2)
if BigEndianMem = 0 then
pAddr pAddr pgzeq2 110 2
endif
byte « vAddr ; o xor BigEndianCPU 2
memword— LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp — memwordzigpyte.0 || GPRIM 23.8+hyte..0
GPR[rt] ~ temp

Exceptions:
None
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecture in MIPS II.

166 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Word Right LWR

31 26 25 21 20 16 15 0
LWR
base rt offset
100110
6 5 5 16
Format: LWR rt, offset(base) MIPS32
Purpose:

To load the least-significant part of a word from an unaligned memory address as a signed value

Description: it « rt MERGE memory[base+offset]

The 16-bit signeaffsetis added to the contents of GRRseto form an effective addreg&ffAddr). EffAddris the
address of the least-significant of 4 consecutive bytes forming a (WMidydn memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word contaikif@ddr This part ofW is loaded into
the least-significant (right) part of the word in GPRRThe remaining most-significant part of the word in GRRs
unchanged.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A pai @fbytes, is in the aligned word con-
taining the least-significant byte at 5. First, LWR loads these 2 bytes into the right part of the destination register.
Next, the complementary LWL loads the remainder of the unaligned word.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 167

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Word Right (cont.) LWR

Figure 3-7 Unaligned Word Load Using LWL and LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
| 0 | 1|1 2] 3 I 41 5| 6 | 7| 8| 9| Memory initial contents

| e | f | g | h | GPR 24 Initial contents
| After executingt WR $24,5($0)

| 2] 3] 4| 5| Then aftet WL $24,2($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAdgt and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

168 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Word Right (cont.) LWR

Figure 3-8 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ~big-endian
| | | J | K | L | offset (vAddr_ ¢ ’ e ’ f ‘ g ‘ h ‘
3 2 1 0 «little-endian most least
most least — significance—
— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian VAddy_ g Little-endian Little-endian
e f g | 0 I J K L
e f|l1 3 1 e| 1 J K
el 1 J K 2 HE
I J K L 3 e f g |
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 169

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Word Right (cont.) LWR

Restrictions:
None

Operation:

vAddr ~ sign_extend(offset) + GPR[base]
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddr pgize.1.o || (PAddr 1.0 Xor ReverseEndian 2)
if BigEndianMem = 0 then
pAddr pAddr pgzeq2 110 2
endif
byte « vAddr ; o xor BigEndianCPU 2
memword— LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp .~ memwords; spgimyte || GPRIM 31-gwyte.0
GPR[rt] ~ temp

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecture in MIPS II.

170 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Load Word Indexed to Floating Point LWXC1

31 26 25 21 20 16 15 11 10 6 5 0
COP1X 0 LWXC1
base index fd
010011 00000 000000
6 5 5 5 5 6
Format: LWXCL1 fd, index(base) MIPS64

MIPS32 Release 2

Purpose:
To load a word from memory to an FPR (GPR+GPR addressing)

Description: fd ~ memory[base+index]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of coprocessor 1 general regfstefhe contents of GPidexand GPRbaseare added to

form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddiege 0 (not word-aligned).

Operation:

vAddr ~ GPR[base] + GPR[index]
ifvAddr ;o #0 ?then
SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)

memword — LoadMemory(CCA, WORD, pAddr, vAddr, DATA)

StoreFPR(ft, UNINTERPRETED_WORD,
memword)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 171

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

172

Multiply and Add Word to Hi,Lo MADD

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 0 0 MADD
Is rt
011100 0000 00000 000000
6 5 5 5 5 6
Format: MADD rs, rt MIPS32
Purpose:

To multiply two words and add the result to Hi, Lo

Description: (HI,LO) « (HILLO) + (rs x rt)

The 32-bit word value in GPRs is multiplied by the 32-bit word value in GPR, treating both operands as signed
values, to produce a 64-bit result. The product is added to the 64-bit concatenated véluasdifO.. The most sig-
nificant 32 bits of the result are written intdl and the least signficant 32 bits are written . No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp « (HI || LO) + (GPR][rs] x GPR(rt])
HI — temp g3 32
LO — temp 31,9

Exceptions:
None

Programming Notes:

Where the size of the operands are known, software should place the shorter operandinT®izRmay reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Multiply Add MADD.fmt

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X MADD
fr ft fs fd fmt
010011 100
6 5 5 5 5 3 3
Format: MADD.S fd, fr, fs, ft MIPS64
MIPS32 Release 2
MADD.D fd, fr, fs, ft MIPS64
MIPS32 Release 2
MADD.PS fd, fr, fs, ft MIPS64

MIPS32 Release 2

Purpose:
To perform a combined multiply-then-add of FP values

Description: fd ~ (fs xft) +fr

The value in FPRs is multiplied by the value in FPR to produce an intermediate product. The value in FPR
added to the product. The result sum is calculated to infinite precision, rounded according to the current rounding
mode inNFCSR and placed into FPfR. The operands and result are values in fofmat

MADD.PS multiplies then adds the upper and lower halves of FPRPRfs, and FPRft independently, and ORs
together any generated exceptional conditions.

Causebits are ORed into thelag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of tyfipg; if they are not valid, the result INPRE-
DICTABLE .

The operands must be values in fornfrat; if they are not, the result i§SNPREDICTABLE and the value of the
operand FPRs becomg®\PREDICTABLE .

The result of MADD.PS i§SINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr — ValueFPR(fr, fmt)
vfs « ValueFPR(fs, fmt)
vit « ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs Xemt VIt) +imt VIT)

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 173

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Multiply Add (cont.) MADD.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

174 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Multiply and Add Unsigned Word to Hi,Lo MADDU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 0 0 MADDU
Is rt
011100 00000 00000 000001
6 5 5 5 5 6
Format: MADDU rs, rt MIPS32
Purpose:

To multiply two unsigned words and add the result to Hi, Lo.

Description: (HI,LO) « (HI,LO) + (rs x rt)

The 32-bit word value in GPRs is multiplied by the 32-bit word value in GPR, treating both operands as unsigned
values, to produce a 64-bit result. The product is added to the 64-bit concatenated véluasdifO.. The most sig-
nificant 32 bits of the result are written intdl and the least signficant 32 bits are written ih#®. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp « (HI || LO) + (GPR][rs] x GPR(rt])
HI — temp g3 32
LO — temp 31,9

Exceptions:
None

Programming Notes:

Where the size of the operands are known, software should place the shorter operandinT®izRmay reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 175

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

176

Move from Coprocessor 0 MFCO
31 26 25 21 20 16 15 11 10 3 2 0
COPO MF 0
rt rd sel
010000 00000 00000000
6 5 5 5 8 3
Format: MFCO rt, rd MIPS32
MFCO rt, rd, sel MIPS32
Purpose:

To move the contents of a coprocessor 0 register to a general register.

Description: rt

~ CPR[O0,rd,sel]

The contents of the coprocessor 0 register specified by the combination of rd and sel are loaded into general register
rt. Note that not all coprocessor 0 registers support the sel field. In those instances, the sel field must be zero.

Restrictions:
The results ar&INDEFINED if coprocessor 0 does not contain a register as specifietiandsel

Operation:
data ~ CPR[O,rd,sel]
GPR[rtf] ~ data
Exceptions:

Coprocessor Unusable

Reserved Instruction

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Word From Floating Point MFEC1

31 26 25 21 20 16 15 11 10 0
COP1 MF 0
rt fs
010001 00000 000 0000 0000
6 5 5 5 11
Format: MFC1rt,fs MIPS32
Purpose:

To copy a word from an FPU (CP1) general register to a GPR

Description: rt ~ fs
The contents of FPR fs are loaded into general register rt.

Restrictions:

Operation:
data ~ ValueFPR(fs, UNINTERPRETED_WORD)
GPR[rf] < data

Exceptions:
Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS I, MIPS II, and MIPS lll the contents of GRRare UNPREDICTABLE for the instruction immediately
following MFC1.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 177

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Word From Coprocessor 2 MEC?2
31 26 25 21 20 16 15 11 10 8 7 0
COP2 MF
rt Impl
010010 00000
6 5 5
Format: MFC2rt, rd MIPS32
MFC2, rt, rd, sel MIPS32

178

The syntax shown above is an example using MFC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from a COP2 general register to a GPR

Description: rt

« CP2CPR[Impl]

The contents of the coprocessor 2 register denoted byrthEfield are and placed into general register rt. The inter-
pretation of thdmpl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The results ar&NPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:
data ~ CP2CPR[Impl]
GPR[rtf] < data
Exceptions:

Coprocessor Unusable

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Word From High Half of Floating Point Register MEHC1
31 26 25 21 20 16 15 11 10 0
COP1 MFH 0
rt fs
010001 00011 000 0000 0000
6 5 5 5 11

Format: MFHC1 rt, fs

Purpose:

To copy a word from the high half of an FPU (CP1) general register to a GPR

Description: it « fs g3 32

MIPS32 Release 2

The contents of the high word of FHRare loaded into general registér This instruction is primarily intended to
support 64-bit floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

The results areNPREDICTABLE if Statugg = 0 andfsis odd.

Operation:

data — ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)g3 32

GPRIr]

Exceptions:

~ data

Coprocessor Unusable

Reserved Instruction

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

179

Move Word From High Half of Coprocessor 2 Register MEHC2

31 26 25 21 20 16 15 11 10 3 2 0
COP2 MFH
rt Impl
010010 00011
6 5 5 16
Format: MFHC2rt, rd MIPS32 Release 2
MFHC2, rt, rd, sel MIPS32 Release 2

The syntax shown above is an example using MFHC1 as a model. The specific syntax is implementation dependent.

Purpose:
To copy a word from the high half of a COP2 general register to a GPR

Description: rt — CP2CPR[Impl] g3 22

The contents of the high word of the coprocessor 2 register denoted bideld are placed into GPR rt. The
interpretation of thempl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results ar&JNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data ~ CP2CPR[Impl] &3 32
GPR[rf] < data

Exceptions:
Coprocessor Unusable
Reserved Instruction

180 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move From HI Register MFHI

31 26 25 16 15 11 10 6 5 0
SPECIAL 0 0 MFHI
rd
000000 00 0000 0000 00000 010000
6 10 5 5 6
Format: MFHIrd MIPS32
Purpose:

To copy the special purpos# register to a GPR

Description: rd « HI
The contents of special registér are loaded into GPRI.

Restrictions:
None

Operation:
GPR[rd] « HI

Exceptions:
None

Historical Information:

In the MIPS I, II, and Il architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI SNPREDICTABLE . This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 181

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move From LO Register MFLO

31 26 25 16 15 11 10 6 5 0
SPECIAL 0 0 MFLO
rd
000000 00 0000 0000 00000 010010
6 10 5 5 6
Format:. MFLO rd MIPS32
Purpose:

To copy the special purpo&® register to a GPR

Description:rd < LO
The contents of special registed are loaded into GPRI.

Restrictions: None

Operation:
GPR[rd] « LO

Exceptions:
None

Historical Information:

In the MIPS 1, II, and Il architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI @NPREDICTABLE . This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

182 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Move MOV.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 MoV

fmt fs fd
010001 00000 000110
6 5 5 5 5 6

Format: MOV.Sfd, fs MIPS32
MOV.D fd, fs MIPS32
MOV.PS fd, fs MIPS64

MIPS32 Release 2

Purpose:
To move an FP value between FPRs

Description: fd ~ fs

The value in FPRsis placed into FPRd. The source and destination are values in forfmt In paired-single for-
mat, both the halves of the pair are copieftito

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs andfd must specify FPRs valid for operands of tyfpet, if they are not valid, the result iINPRE-
DICTABLE .

The operand must be a value in fornfiat; if it is not, the result i)JJNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of MOV.PS isNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 183

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Conditional on Floating Point False MOVF

31 26 25 21 20 18 17 16 15 11 10 6 5 0
SPECIAL 0| tf 0 MOVCI
rs cc rd
000000 0|0 00000 000001
6 5 3 1 1 5 5 6
Format: MOVF rd, rs, cc MIPS32
Purpose:

To test an FP condition code then conditionally move a GPR

Description: if cc = 0 then rd - IS

If the floating point condition code specified ®C is zero, then the contents of GPRare placed into GPRI.

Restrictions:

Operation:
if FPConditionCode(cc) =0then
GPR[rd] « GPRJrs]
endif
Exceptions:

Reserved Instruction, Coprocessor Unusable

184 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Floating Point False MOVEfmt

31 26 25 21 20 18 17 16 15 11 10 6 5 0
COP1 0] tf MOVCF
fmt cc fs fd
010001 0|0 010001
6 5 3 1 1 5 5 6

Format: MOVF.Sfd, fs, cc MIPS32
MOVF.D fd, fs, cc MIPS32
MOVF.PS fd, fs, cc MIPS64

MIPS32 Release 2

Purpose:
To test an FP condition code then conditionally move an FP value

Description: if cc = 0 then fd ~ fs

If the floating point condition code specified BCis zero, then the value in FPRis placed into FPRd. The source
and destination are values in fornfrat

If the condition code is not zero, then FIPRs not copied and FPRI retains its previous value in format If fd did
not contain a value either in formént or previously unused data from a load or move-to operation that could be
interpreted in formafimt, then the value dil becomedJNPREDICTABLE .

MOVF.PS conditionally merges the lower half of FRnto the lower half of FPRd if condition codeCC is zero,
and independently merges the upper half of F®Rto the upper half of FPRI if condition codeCC+1 is zero. The
CCfield must be even; if it is odd, the result of this operatittN®REDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs andfd must specify FPRs valid for operands of tyfpet, if they are not valid, the result iENPRE-
DICTABLE . The operand must be a value in fornfiat; if it is not, the result i9JNPREDITABLE and the value of
the operand FPR becomdblPREDICTABLE .

The result of MOVF.PS ieNPREDICTABLE if the processor is executing in 16 FP registers mode.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 185

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Floating Point False (cont.) MOVEfmt

Operation:
if FPConditionCode(cc) =0then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions
Unimplemented Operation

186 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Conditional on Not Zero MOVN

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 MOVN
rs rt rd
000000 00000 001011
6 5 5 5 5 6
Format: MOVNTd, rs, rt MIPS32
Purpose:

To conditionally move a GPR after testing a GPR value

Description: if rt # 0 then rd - IS
If the value in GPRt is not equal to zero, then the contents of GP&e placed into GPRI.

Restrictions:
None

Operation:

if GPR[rt] # 0 then
GPR[rd] < GPRJrs]
endif

Exceptions:
None

Programming Notes:

The non-zero value tested here is tdoadition trueresult from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 187

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Not Zero MOVN.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 MOVN

fmt rt fs fd
010001 010011
6 5 5 5 5 6

Format: MOVN.S fd, fs, rt MIPS32
MOVN.D fd, fs, rt MIPS32
MOVN.PS fd, fs, rt MIPS64

MIPS32 Release 2

Purpose:
To test a GPR then conditionally move an FP value

Description: ifrt ~ #0then fd ~ fs

If the value in GPRt is not equal to zero, then the value in FRs placed in FPRd. The source and destination are
values in formafmt

If GPR rt contains zero, then FPRis not copied and FPRI contains its previous value in format If fd did not
contain a value either in forméint or previously unused data from a load or move-to operation that could be inter-
preted in formafmt, then the value dfi becomed$JNPREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs andfd must specify FPRs valid for operands of tyfpet, if they are not valid, the result IENPRE-
DICTABLE .

The operand must be a value in fornfrat; if it is not, the result iJUNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of MOVN.PS isINPREDICTABLE if the processor is executing in 16 FP registers mode.

188 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Not Zero MOVN.fmt

Operation:

if GPR[rt] # 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions
Unimplemented Operation

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 189

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Conditional on Floating Point True MOVT

31 26 25 21 20 18 17 16 15 11 10 6 5 0
SPECIAL 0| tf 0 MOVCI
rs cc rd
000000 0|1 00000 000001
6 5 3 1 1 5 5 6
Format: MOVTrd, rs, cc MIPS32
Purpose:

To test an FP condition code then conditionally move a GPR

Description: if cc = 1 then rd - IS
If the floating point condition code specified ®¢ is one, then the contents of GRRare placed into GPRI.

Restrictions:

Operation:
if FPConditionCode(cc) =1then
GPR[rd] « GPR]rs]
endif
Exceptions:

Reserved Instruction, Coprocessor Unusable

190 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Floating Point True MOVT.fmt

31 26 25 21 20 18 17 16 15 11 10 6 5 0
COP1 0] tf MOVCF
fmt cc fs fd
010001 0|1 010001
6 5 3 1 1 5 5 6

Format: MOVT.Sfd, fs, cc MIPS32
MOVT.D fd, fs, cc MIPS32
MOVT.PS fd, fs, cc MIPS64

MIPS32 Release 2

Purpose:
To test an FP condition code then conditionally move an FP value

Description: if cc = 1 then fd ~ fs

If the floating point condition code specified BC is one, then the value in FPRis placed into FPRd. The source
and destination are values in fornfrat

If the condition code is not one, then FR&s not copied and FPRI contains its previous value in form#utt. If fd
did not contain a value either in formfit or previously unused data from a load or move-to operation that could be
interpreted in formafimt, then the value dfl becomes undefined.

MOVT.PS conditionally merges the lower half of FR&into the lower half of FPRd if condition codeCC is one,
and independently merges the upper half of F®Rto the upper half of FPRI if condition codeCC+1 is one. The
CCfield should be even; if it is odd, the result of this operatiiNBREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs andfd must specify FPRs valid for operands of tyfpet, if they are not valid, the result iENPRE-
DICTABLE . The operand must be a value in fornfrat; if it is not, the result i9JINPREDICTABLE and the value
of the operand FPR becomdblPREDICTABLE .

The result of MOVT.PS isENPREDICTABLE if the processor is executing in 16 FP registers mode.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 191

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Floating Point True MOVT.fmt

Operation:

if FPConditionCode(cc) =0then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

192 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Conditional on Zero MOVZ

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 MOVZ
rs rt rd
000000 00000 001010
6 5 5 5 5 6
Format: MOVZrd, rs, rt MIPS32
Purpose:

To conditionally move a GPR after testing a GPR value

Description: if rt =0 then rd - IS
If the value in GPRt is equal to zero, then the contents of GPRre placed into GPRI.

Restrictions:
None

Operation:

if GPR[rt] =0then
GPR[rd] < GPRJrs]
endif

Exceptions:
None

Programming Notes:

The zero value tested here is tbendition falseresult from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 193

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Zero MOVZ.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 MOVZ

fmt rt fs fd
010001 010010
6 5 5 5 5 6

Format: MOVZ.Sfd, fs, rt MIPS32
MOVZ.D fd, fs, rt MIPS32
MOVZ.PS fd, fs, rt MIPS64

MIPS32 Release 2

Purpose:
To test a GPR then conditionally move an FP value

Description: if rt = 0 then fd ~ fs

If the value in GPRt is equal to zero then the value in Fis placed in FPRd. The source and destination are val-
ues in formafmt

If GPRt is not zero, then FPRis not copied and FPRI contains its previous value in formgatt. If fd did not con-
tain a value either in formdmt or previously unused data from a load or move-to operation that could be interpreted
in formatfmt, then the value dfl becomedJNPREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs andfd must specify FPRs valid for operands of tyjpet, if they are not valid, the result ENPRE-
DICTABLE .

The operand must be a value in fornfrat; if it is not, the result iJUNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of MOVZ.PS iEINPREDICTABLE if the processor is executing in 16 FP registers mode.

194 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Zero (cont.) MOVZ.fmt

Operation:
if GPR[rt] =0then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 195

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

196

Multiply and Subtract Word to Hi,Lo MSUB

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 0 0 MSUB
rs rt
011100 00000 00000 000100
6 5 5 5 5 6
Format. MSUB s, 1t MIPS32
Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (HI,LO) « (HI,LO) - (rs X rt)

The 32-bit word value in GPRs is multiplied by the 32-bit value in GPR, treating both operands as signed values,
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated vaiies)df.O.. The most sig-
nificant 32 bits of the result are written intdl and the least signficant 32 bits are written ihi®. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp «~ (HI || LO) - (GPR]rs] x GPR]rt])
HI — temp g3 32
LO temp 31..0

Exceptions:
None

Programming Notes:

Where the size of the operands are known, software should place the shorter operandinT®igRmay reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Multiply Subtract MSUB.fmt

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X MSUB
fr ft fs fd fmt
010011 101
6 5 5 5 5 3 3
Format: MSUB.S fd, fr, fs, ft MIPS64
MSUB.D fd, fr, fs, ft MIPS64
MSUB.PS fd, fr, fs, ft MIPS64

MIPS32 Release 2

Purpose:
To perform a combined multiply-then-subtract of FP values

Description: fd ~ (fs = xft) —fr

The value in FPRs is multiplied by the value in FPR to produce an intermediate product. The value in FPR
subtracted from the product. The subtraction result is calculated to infinite precision, rounded according to the current
rounding mode i=CSR and placed into FPfl. The operands and result are values in fofmat

MSUB.PS multiplies then subtracts the upper and lower halves offEFHRRfs, and FPRt independently, and ORs
together any generated exceptional conditions.

Causebits are ORed into thelag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of tyfipg; if they are not valid, the result INPRE-
DICTABLE .

The operands must be values in fornfrat; if they are not, the result iI§SNPREDICTABLE and the value of the
operand FPRs becomg®\PREDICTABLE .

The result of MSUB.PS iINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr — ValueFPR(fr, fmt)
vfs « ValueFPR(fs, fmt)
vit « ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs Xemt VIt) —fmt V1))

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 197

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Multiply Subtract (cont.) MSUB.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

198 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Multiply and Subtract Word to Hi,Lo MSUBU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 0 0 MSUBU
Is rt
011100 00000 00000 000101
6 5 5 5 5 6
Format: MSUBU rs, rt MIPS32
Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (HI,LO) « (HI,LO) - (rs x rt)

The 32-bit word value in GPRs is multiplied by the 32-bit word value in GPR, treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated veluasdifO.. The
most significant 32 bits of the result are written ittband the least signficant 32 bits are written ib®. No arith-
metic exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ~ (HI|| LO) - (GPRJrs] x GPRJrt])
HI — temp g3 32
LO — temp 31,9

Exceptions:
None

Programming Notes:

Where the size of the operands are known, software should place the shorter operandinT®izRmay reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 199

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

200

Move to Coprocessor 0

MTCO

31 26 25 21 20 16 15 11 10 2 0
COPO MT 0
rt rd sel
010000 00100 0000 000
6 5 5 5 8 3
Format:. MTCOrt, rd MIPS32
MTCO rt, rd, sel MIPS32
Purpose:

To move the contents of a general register to a coprocessor O register.

Description: CPR[O0, rd, sel]

The contents of general register rt are loaded into the coprocessor 0 register specified by the combination of rd and
sel. Not all coprocessor 0 registers support the the sel field. In those instances, the sel field must be set to zero.

Restrictions:
The results ar&NDEFINED if coprocessor 0 does not contain a register as specifietidndsel

Operation:

data

Exceptions:

~ GPR]r]
CPRJO,rd,sel]

Coprocessor Unusable

Reserved Instruction

~ data

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Word to Floating Point MTC1

31 26 25 21 20 16 15 11 10 0
COP1 MT 0
rt fs
010001 00100 000 0000 0000
6 5 5 5 11
Format: MTC1rt,fs MIPS32
Purpose:

To copy a word from a GPR to an FPU (CP1) general register

Description: fs « rt
The low word in GPRt is placed into the low word of floating point (Coprocessor 1) general refsister

Restrictions:

Operation:

data ~ GPR[rtf] 319
StoreFPR(fs, UNINTERPRETED_WORD, data)

Exceptions:
Coprocessor Unusable

Historical Information:

For MIPS I, MIPS II, and MIPS Il the value of FPRRis UNPREDICTABLE for the instruction immediately follow-
ing MTC1.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 201

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Word to Coprocessor 2 MTC2

31 26 25 21 20 16 15 11 10 8 7 0
COP2 MT
rt Impl
010010 00100
6 5 5 16
Format: MTC2rt, rd MIPS32
MTC2 rt, rd, sel MIPS32

The syntax shown above is an example using MTC1 as a model. The specific syntax is implementation dependent.

Purpose:
To copy a word from a GPR to a COP2 general register

Description: CP2CPR[Impl] « 1t

The low word in GPRt is placed into the low word of coprocessor 2 general register denoted by héeld. The
interpretation of thempil field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results ar&NPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:

data ~ GPR]rt]
CP2CPR[Impl] < data

Exceptions:
Coprocessor Unusable
Reserved Instruction

202 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Word to High Half of Floating Point Register MTHC1

31 26 25 21 20 16 15 11 10 0
COP1 MTH 0
rt fs
010001 00111 000 0000 0000
6 5 5 5 11
Format: MTHC1rt, fs MIPS32 Release 2
Purpose:

To copy a word from a GPR to the high half of an FPU (CP1) general register

Description: fs g3 30« 1t

The word in GPRt is placed into the high word of floating point (Coprocessor 1) general redgst#nis instruction

is primarily intended to support 64-bit floating point units on a 32-bit CPU, but the semantics of the instruction are
defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The results areNPREDICTABLE if Statugg = 0 andfs is odd.

Operation:

newdata ~ GPRJrtJolddata ~ ValueFPR(fs, UNINTERPRETED_DOUBLEWORD) 37 ¢
StoreFPR(fs, UNINTERPRETED_DOUBLEWORD, newdata || olddata)

Exceptions:
Coprocessor Unusable
Reserved Instruction

Programming Notes

When paired with MTC1 to write a value to a 64-bit FPR, the MTC1 must be executed first, followed by the MTHCL1.
This is because of the semantic definition of MTC1, which is not aware that software will be using an MTHC1
instruction to complete the operation, and sets the upper half of the 64-bit FPEBN®REDICTABLE value.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 203

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move Word to High Half of Coprocessor 2 Register MTHC2

31 26 25 21 20 16 15 11 10 0
COP2 MTH
rt Impl
010010 00111
6 5 5 16
Format: MTHC2rt, rd MIPS32 Release 2
MTHC2 rt, rd, sel MIPS32 Release 2

The syntax shown above is an example using MTHC1 as a model. The specific syntax is implementation dependent.

Purpose:
To copy a word from a GPR to the high half of a COP2 general register

Description: CP2CPR[Impl] g3 .30 <« It

The word in GPRt is placed into the high word of coprocessor 2 general register denoted byphéeld. The
interpretation of thempl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results ar&JNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data ~ GPR]r]
CP2CPR[Impl] ~ data ||CPR[2,rd,sel] 310

Exceptions:
Coprocessor Unusable
Reserved Instruction

Programming Notes

When paired with MTC2 to write a value to a 64-bit CPR, the MTC2 must be executed first, followed by the
MTHC?2. This is because of the semantic definition of MTC2, which is not aware that software will be using an
MTHC?2 instruction to complete the operation, and sets the upper half of the 64-bit CPRIRREDICTABLE

value.

204 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move to HI Register MTHI

31 26 25 21 20 6 5 0
SPECIAL 0 MTHI
Is
000000 000 0000 0000 0000 010001
6 5 15 6
Format: MTHIrs MIPS32
Purpose:

To copy a GPR to the special purpbHeregister

Description: HI « rs
The contents of GPR are loaded into special registét.

Restrictions:

A computed result written to thEll/LO pair by DIV, DIVU,MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into eitHéior LO.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents &O are UNPREDICTABLE. The following example shows this illegal situation:
MUL r2,r4 # start operation that will eventually write to HI,LO
code not containing mfhi or mflo
MTHI r6

code not containing mflo

MFLO 3 # this mflo would get an UNPREDICTABLE value
Operation:

HI < GPR[rs]
Exceptions:
None

Historical Information:

In MIPS I-111, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of thedl or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32 and MIPS64, this restriction does not exist.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 205

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Move to LO Register MTLO

31 26 25 21 20 6 5 0
SPECIAL 0 MTLO
Is
000000 000 0000 0000 0000 010011
6 5 15 6
Format. MTLOrs MIPS32
Purpose:

To copy a GPR to the special purpaseregister

Description: LO « rs
The contents of GPRs are loaded into special registed.

Restrictions:

A computed result written to thEll/LO pair by DIV, DIVU, MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into eitHéior LO.

If an MTLO instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents &fl are UNPREDICTABLE. The following example shows this illegal situation:
MUL r2,r4 # start operation that will eventually write to HI,LO
code not containing mfhi or mflo
MTLO 6

code not containing mfhi

MFHI 3 # this mfhi would get an UNPREDICTABLEVvalue
Operation:

LO < GPRrs]
Exceptions:
None

Historical Information:

In MIPS I-111, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of thedl or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32 and MIPS64, this restriction does not exist.

206 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Multiply Word to GPR MUL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 0 MUL
rs rt rd
011100 00000 000010
6 5 5 5 5 6
Format: MULrd, rs, rt MIPS32
Purpose:

To multiply two words and write the result to a GPR.

Description:rd « rs Xt

The 32-bit word value in GPRs is multiplied by the 32-bit value in GPR, treating both operands as signed values,
to produce a 64-bit result. The least significant 32 bits of the product are written tadsHRe contents oHI and

LO areUNPREDICTABLE after the operation. No arithmetic exception occurs under any circumstances.
Restrictions:

Note that this instruction does not provide the capability of writing the result to the HI and LO registers.

Operation:
temp <- GPR[rs] * GPR][rt]
GPR[rd] <-temp 31 o
HI <- UNPREDICTABLE
LO <- UNPREDICTABLE
Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to r€&eR rdbefore the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operandinT®izRmay reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 207

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Multiply MUL.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 MUL

fmt ft fs fd
010001 000010

6 5 5 5 5 6
Format: MUL.Sfd, fs, ft MIPS32
MUL.D fd, fs, ft MIPS32
MUL.PS fd, fs, ft MIPS64

MIPS32 Release 2

Purpose:
To multiply FP values

Description: fd ~ fs xft

The value in FPRsis multiplied by the value in FPR. The result is calculated to infinite precision, rounded accord-
ing to the current rounding mode FCSR and placed into FPRI. The operands and result are values in forfrvt
MUL.PS multiplies the upper and lower halves of FBRnd FPRit independently, and ORs together any generated
exceptional conditions.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of tyip&; if they are not valid, the result INPRE-
DICTABLE .

The operands must be values in fornfrat; if they are not, the result i§NPREDICTABLE and the value of the
operand FPRs becom&g®PREDICTABLE .

The result of MUL.PS i NPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR (fd, fmt, ValueFPR(fs, fmt) Xt ValueFPR(ft, fmt))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

208 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Multiply Word MULT

31 26 25 21 20 16 15 6 5 0
SPECIAL 0 MULT
Is rt
000000 00 0000 0000 011000
6 5 5 10 6
Format: MULT s, 1t MIPS32
Purpose:

To multiply 32-bit signed integers

Description: (HI, LO) — rs xrt

The 32-bit word value in GPR is multiplied by the 32-bit value in GPR, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is placed into special relg3teand the
high-order 32-bit word is splaced into special registier

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:
prod « GPR[rs] 310 XGPR[] 319
LO — prod 31..0
HI — prod 63..32

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to ré&or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operandinT®izRmay reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 209

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Multiply Unsigned Word MULTU

31 26 25 21 20 16 15 6 5 0
SPECIAL 0 MULTU
Is rt
000000 00 0000 0000 011001
6 5 5 10 6
Format: MULTU rs, rt MIPS32
Purpose:

To multiply 32-bit unsigned integers

Description: (HI, LO) —rs xrt

The 32-bit word value in GPR is multiplied by the 32-bit value in GPHR, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special re@istard the
high-order 32-bit word is placed into special register

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod — (O || GPR[rs] 3r.0) X (0] GPRIr] 31.0)
LO prod 31..0
HI ~ prod 63..32

Exceptions:
None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to ré&or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operandinT®izRmay reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

210 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Negate NEG.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 NEG

fmt fs fd
010001 00000 000111
6 5 5 5 5 6

Format: NEG.Sfd, fs MIPS32
NEG.D fd, fs MIPS32
NEG.PS fd, fs MIPS64

MIPS32 Release 2

Purpose:
To negate an FP value

Description: fd ~ —fs

The value in FPRsis negated and placed into FFR The value is negated by changing the sign bit value. The oper-
and and result are values in fornfait NEG.PS negates the upper and lower halves of EHRdependently, and
ORs together any generated exceptional conditions.

This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fieldsfs andfd must specify FPRs valid for operands of tyfpet, if they are not valid, the result IINPRE-
DICTABLE . The operand must be a value in fornfrat; if it is not, the result iSUNPREDICTABLE and the value
of the operand FPR becomdBlPREDICTABLE .

The result of NEG.PS IINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 211

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Negative Multiply Add NMADD.fmt

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X NMADD
fr ft fs fd fmt
010011 110
6 5 5 5 5 3 3
Format: NMADD.S fd, fr, fs, ft MIPS64
NMADD.D fd, fr, fs, ft MIPS64
NMADD.PS fd, fr, fs, ft MIPS64

MIPS32 Release 2

Purpose:
To negate a combined multiply-then-add of FP values

Description: fd « —((fs xft) +fr)

The value in FPRs is multiplied by the value in FPR to produce an intermediate product. The value in FPR
added to the product.

The result sum is calculated to infinite precision, rounded according to the current rounding nk@eRmegated
by changing the sign bit, and placed into FBRThe operands and result are values in fofmat

NMADD.PS applies the operation to the upper and lower halves of ffPRPRfs, and FPRft independently, and
ORs together any generated exceptional conditions.

Causebits are ORed into thelag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of tyfipg; if they are not valid, the result INPRE-
DICTABLE .

The operands must be values in fornfrat; if they are not, the result i§SNPREDICTABLE and the value of the
operand FPRs becomg®d\PREDICTABLE .

The result of NMADD.PS i&/NPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr « ValueFPR(fr, fmt)
vfs « ValueFPR(fs, fmt)
vit « ValueFPR(ft, fmt)
StoreFPR(fd, fmt, =(vfr g (VIS Xgyy VL))

212 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Negative Multiply Add (cont.) NMADD.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 213

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Negative Multiply Subtract NMSUB.fmt

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X NMSUB
fr ft fs fd fmt
010011 111
6 5 5 5 5 3 3
Format: NMSUB.S fd, fr, fs, ft MIPS64
NMSUB.D fd, fr, fs, ft MIPS64
NMSUB.PS fd, fr, fs, ft MIPS64

MIPS32 Release 2

Purpose:
To negate a combined multiply-then-subtract of FP values

Description: fd - ((fs x ft) - fr)

The value in FPRs is multiplied by the value in FPR to produce an intermediate product. The value in FPR
subtracted from the product.

The result is calculated to infinite precision, rounded according to the current rounding me@&knegated by
changing the sign bit, and placed into FiRThe operands and result are values in fofmat

NMSUB.PS applies the operation to the upper and lower halves offEFPRfs, and FPRft independently, and
ORs together any generated exceptional conditions.

Causebits are ORed into thelag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of tyfipg; if they are not valid, the result INPRE-
DICTABLE .

The operands must be values in fornfrat; if they are not, the result i§SNPREDICTABLE and the value of the
operand FPRs becomg®d\PREDICTABLE .

The result of NMSUB.PS iINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr « ValueFPR(fr, fmt)
vfs « ValueFPR(fs, fmt)
vit « ValueFPR(ft, fmt)
StoreFPR(fd, fmt, —((vfs Xgpe Vt) —fmt VIT))

214 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Negative Multiply Subtract (cont.) NMSUB.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 215

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

No Operation

216

NOP
31 26 25 21 20 16 15 11 10 5 0
SPECIAL 0 0 0 0 SLL
000000 00000 00000 00000 00000 000000
6 5 5 5 5 6
Format: NOP Assembly Idiom
Purpose:

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as SLL

ro, r0, 0.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

The zero instruction word, which represents SLL, r0, r0, 0, is the preferred NOP for software to use to fill branch and
jump delay slots and to pad out alignment sequences.

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Not Or NOR
31 26 25 21 20 16 15 11 10 0
SPECIAL 0 NOR
rs rt rd
000000 00000 100111
6 5 5 5 5 6
Format: NORd, rs, rt MIPS32
Purpose:

To do a bitwise logical NOT OR

Description: rd

« rsNOR Tt

The contents of GPIRs are combined with the contents of GIPRn a bitwise logical NOR operation. The result is
placed into GPRd.

Restrictions:

None

Operation:
GPRrd]

Exceptions:

None

« GPR([rs] nor GPR]rt]

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

217

Or

218

OR
31 26 25 21 20 16 15 11 10 0
SPECIAL 0 OR
rs rt rd
000000 00000 100101
6 5 5 5 5 6
Format: ORd,rs, 1t MIPS32
Purpose:

To do a bitwise logical OR

Description: rd

«— rsorrt

The contents of GPIRs are combined with the contents of GPRn a bitwise logical OR operation. The result is
placed into GPRd.

Restrictions:

None

Operation:
GPRrd]

Exceptions:

None

« GPR([rs] or GPR]rt]

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Or Immediate ORI

31 26 25 21 20 16 15 0
ORI
rs rt immediate
001101
6 5 5 16
Format: ORI rt, rs, immediate MIPS32
Purpose:

To do a bitwise logical OR with a constant

Description: rt < rs or immediate

The 16-bitimmediates zero-extended to the left and combined with the contents of GRRa bitwise logical OR
operation. The result is placed into GRR

Restrictions:
None

Operation:
GPR[rt] < GPR]rs] or zero_extend(immediate)

Exceptions:
None

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 219

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Pair Lower Lower PLL.PS

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt PLL
ft fs fd
010001 10110 101100
6 5 5 5 5 6
Format: PLL.PSfd, fs, ft MIPS64

MIPS32 Release 2

Purpose:

To merge a pair of paired single values with realignment

Description: fd « lower(fs) || lower(ft)

A new paired-single value is formed by catenating the lower singfs (fits 31..0) and the lower single &f (bits
31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typ& If they are not valid, the result INPRE-
DICTABLE .

The result of this instruction ISINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, PS, ValueFPR(fs, PS) 31.0 |l ValueFPR(ft, PS) 31.0)

Exceptions:
Coprocessor Unusable, Reserved Instruction

220 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Pair Lower Upper PLU.PS

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt PLU
ft fs fd
010001 10110 101101
6 5 5 5 5 6
Format: PLU.PSfd, fs, ft MIPS64

MIPS32 Release 2

Purpose:
To merge a pair of paired single values with realignment
Description: fd — lower(fs) || upper(ft)

A new paired-single value is formed by catenating the lower singfs @fits 31..0) and the upper single ff(bits
63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typ8 If they are not valid, the result iINPRE-
DICTABLE .

The result of this instruction ISNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, PS, ValueFPR(fs, PS) 31.0 |l ValueFPR(ft, PS) 63.32)

Exceptions:
Coprocessor Unusable, Reserved Instruction

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 221

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Prefetch PREF

31 26 25 21 20 16 15 0
PREF
base hint offset
110011
6 5 5 16
Format: PREF hint,offset(base) MIPS32
Purpose:

To move data between memory and cache.

Description: prefetch_memory(base+offset)

PREF adds the 16-bit signedfsetto the contents of GPRaseto form an effective byte address. Thimt field sup-
plies information about the way that the data is expected to be used.

PREF enables the processor to take some action, typically prefetching the data into cache, to improve program perfor-
mance. The action taken for a specific PREF instruction is both system and context dependent. Any action, including
doing nothing, is permitted as long as it does not change architecturally visible state or alter the meaning of a pro-
gram. Implementations are expected either to do nothing, or to take an action that increases the performance of the
program. The PrepareForStore function is unique in that it may modify the architecturally visible state.

PREF does not cause addressing-related exceptions. If the address specified would cause an addressing exception, the
exception condition is ignored and no data movement occurs.However even if no data is prefetched, some action that
is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction.

PREF never generates a memory operation for a location withcathednemory access type.

If PREF results in a memory operation, the memory access type used for the operation is determined by the memory
access type of the effective address, just as it would be if the memory operation had been caused by a load or store to
the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

The hint field supplies information about the way the data is expected to be used. With the exception of PrepareFor-
Store, ahint value cannot cause an action to modify architecturally visible state. A processor mahinseadue to
improve the effectiveness of the prefetch action.

222 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Prefetch (cont.)

Table 3-30 Values of théhint Field for the PREF Instruction

Value

Name

Data Use and Desired Prefetch Action

load

Use: Prefetched data is expected to be read (not modified).

Action: Fetch data as if for a load.

store

Use: Prefetched data is expected to be stored or modified.

Action: Fetch data as if for a store.

Reserved

Reserved for future use - not available to implementations.

load_streamed

Use: Prefetched data is expected to be read (not modified) bu
reused extensively; it “streams” through cache.

Action: Fetch data as if for a load and place it in the cache so th
does not displace data prefetched as “retained.”

not

at it

store_streamed

Use: Prefetched data is expected to be stored or modified but
reused extensively; it “streams” through cache.

Action: Fetch data as if for a store and place it in the cache so
it does not displace data prefetched as “retained.”

not

that

load_retained

Use: Prefetched data is expected to be read (not modified) an
reused extensively; it should be “retained” in the cache.

Action: Fetch data as if for a load and place it in the cache so th
is not displaced by data prefetched as “streamed.”

at it

store_retained

Use: Prefetched data is expected to be stored or modified and r¢
extensively; it should be “retained” in the cache.

Action: Fetch data as if for a store and place it in the cache so
it is not displaced by data prefetched as “streamed.”

used

that

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

PREF

223

Table 3-30 Values of théhint Field for the PREF Instruction

8-24 Reserved Reserved for future use - not available to implementations.

Use: Data is no longer expected to be used.

25 writeback_invalidate

(also known as “nudge” Action: For a writeback cache, schedule a wirteback of any dirty

data. Atthe completion of the writeback, mark the state of any cache
lines written back as invalid.

Implementation
26-29 Dependent Unassigned by the Architecture - available for
implementation-dependent use.

Use: Prepare the cache for writing an entire line, without the
overhead involved in filling the line from memory.

Action: If the reference hits in the cache, no action is taken. If the
reference misses in the cache, a line is selected for replacement, any
30 PrepareForStore valid and dirty victim is written back to memory, the entire line
filled with zero data, and the state of the line is marked as valid and
dirty.

7]

Programming Note: Because the cache line is filled with zero data
on a cache miss, software must not assume that this action, i and
of itself, can be used as a fast bzero-type function.

Implementation)))
31 Dependent Unassigned by the Architecture - available for
implementation-dependent use.

224 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Prefetch (cont.) PREF

Restrictions:
None

Operation:
vAddr ~ GPR[base] + sign_extend(offset)
(pAddr, CCA) ~ AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot prefetch data from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using an address pointer
value before the validity of a pointer is determined.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have
high-reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 225

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Prefetch Indexed PREFX

31 26 25 21 20 16 15 11 10 6 5 0
COP1X 0 PREFX
base index hint
010011 00000 001111
6 5 5 5 5 6
Format: PREFX hint, index(base) MIPS64

MIPS32 Release 2

Purpose:
To move data between memory and cache.

Description: prefetch_memory[base+index]

PREFX adds the contents of GRitlexto the contents of GPBaseto form an effective byte address. Thiat field
supplies information about the way the data is expected to be used.

The only functional difference between the PREF and PREFX instructions is the addressing mode implemented by
the two. Refer to the PREF instruction for all other details, including the encodinghirfitfield.

Restrictions:

Operation:

vAddr ~ GPR[base] + GPR[index]
(pAddr, CCA) ~ AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:
Coprocessor Unusable, Reserved Instruction, Bus Error, Cache Error

Programming Notes:

The PREFX instruction is only available on processors that implement floating point and should never by generated
by compilers in situations in which the corresponding load and store indexed floating point instructions are generated.

Also refer to the corresponding section in the PREF instruction description.

226 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Pair Upper Lower PUL.PS

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt PUL
ft fs fd
010001 10110 101110
6 5 5 5 5 6
Format: PUL.PSfd, fs, ft MIPS64

MIPS32 Release 2

Purpose:
To merge a pair of paired single values with realignment

Description: fd ~ upper(fs) || lower(ft)

A new paired-single value is formed by catenating the upper sindie(bfts 63..32) and the lower single fif(bits
31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typ& If they are not valid, the result INPRE-
DICTABLE .

The result of this instruction ISINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, PS, ValueFPR(fs, PS) 63.32 || ValueFPR(ft, PS) 31.0)

Exceptions:
Coprocessor Unusable, Reserved Instruction

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 227

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Pair Upper Upper PUU.PS

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt PUU
ft fs fd
010001 10110 101111
6 5 5 5 5 6
Format: PUU.PSfd, fs, ft MIPS64

MIPS32 Release 2

Purpose:
To merge a pair of paired single values with realignment

Description: fd ~ upper(fs) || upper(ft)

A new paired-single value is formed by catenating the upper single(bfts 63..32) and the upper single fof{bits
63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typ& If they are not valid, the result INPRE-
DICTABLE .

The result of this instruction ISINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, PS, ValueFPR(fs, PS) 63.32 || ValueFPR(ft, PS) 63.32)

Exceptions:
Coprocessor Unusable, Reserved Instruction

228 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Read Hardware Register RDHWR
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 0 RDHWR
rt rd
011111 00 000 000 00 111011
6 5 5 5 2 3 6
Format: RDHWR rt,rd MIPS32 Release 2
Purpose:

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled by privi-
leged software.
Description: it~ HWR[rd]

If access is allowed to the specified hardware register, the contents of the register spectiiéxllbgided into gen-
eral registert. Access control for each register is selected by the bits in the coprocéBatREnaregister.

The available hardware registers, and the encoding aod tiheld for each, are shown in Table 3-31.

Table 3-31 Hardware Register List

Register Number Register
(rd Value) Name Contents
0 CPUNuM Number of the CPU on which the program is currently running.
This comes directly from the coprocessor 0 EBaggmfield.
1 SYNCI Ste Address step size to be used with the SYNCI instruction. See [that
—SteP | instruction’s description for the use of this value.
> cc High-resolution cycle counter. This comes directly from the
coprocessor Countregister.
Resolution of the CC register. This value denotes the number [of
cycles between update of the register. For example:
CCRes Value Meaning
3 CCRes 1 CC register increments every CPU cycle
2 CC register increments every second CPU gycle
3 CC register increments every third CPU cydle
etc.
All others Access results in a Reserved Instruction Exception

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

229

Read Hardware Register, cont. RDHWR

Restrictions:
In implementations of Release 1 of the Architecture, this instruction resulted in a Reserved Instruction Exception.

Operation:
case rd
16#00: temp ~ EBase cpynum
16#01: temp — SYNCI_StepSize()
16#02: temp ~ Count
16#03: temp ~ CountResolution()
otherwise: SignalException(Reservedinstruction)
endcase
GPR[rtf] ~ temp

Exceptions:
Reserved Instruction

230 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Read GPR from Previous Shadow Set RDPGPR
31 26 25 21 20 16 15 11 10 0
COPO RDPGPR rt rd 0
0100 00 01010 000 0000 0000
6 5 5 5 11

Format: RDPGPRrd, rt

Purpose:

MIPS32 Release 2

To move the contents of a GPR from the previous shadow set to a current GPR.

Description: rd « SGPR[SRSCtl pgg]

The contents of the shadow GPR register specified by SRS&t#Hignifying the previous shadow set number) aind

(specifying the register number within that set) is moved to the current@sPR

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

Operation:
GPR[rd] « SGPR[SRSCtl pgg rt]

Exceptions:
Coprocessor Unusable
Reserved Instruction

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

231

Reciprocal Approximation RECIP.fmt

232

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 RECIP

fmt fs fd
010001 00000 010101
6 5 5 5 5 6
Format: RECIP.S fd,fs MIPS64
MIPS32 Release 2
RECIP.D fd,fs MIPS64
MIPS32 Release 2
Purpose:

To approximate the reciprocal of an FP value (quickly)

Description: fd ~ 1.0/fs

The reciprocal of the value in FPR is approximated and placed into FR®R The operand and result are values in
formatfmt

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from the both the exact result and the IEEE-mandated
representation of the exact result by no more than one unit in the least-significant place (ULP).

It is implementation dependent whether the result is affected by the current rounding RG&&Rin

Restrictions:

The fieldsfs andfd must specify FPRs valid for operands of tyjpet, if they are not valid, the result sNPRE-
DICTABLE .

The operand must be a value in fornfiat; if it is not, the result iJJNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of RECIP.D iNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, fmt, 1.0 / valueFPR(fs, fmt))

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Reciprocal Approximation (cont.) RECIP.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 233

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Rotate Word Right ROTR

31 26 25 22 21 20 16 15 11 10 6 5 0
SPECIAL R SRL
0000 1 rt rd sa
000000 000010
6 4 1 5 5 5 6
Format. ROTRd, i, sa SmartMIPS Crypto

MIPS32 Release 2

Purpose:
To execute a logical right-rotate of a word by a fixed number of bits

Description: rd < rt (right) sa

The contents of the low-order 32-bit word of GPRare rotated right; the word result is placed in GlRThe
bit-rotate amount is specified bg.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3 sv= 0)) then
UNPREDICTABLE

endif

s ~ sa

temp ~ GPR[M] 30 [IGPR[M] 315

GPR[rd] ~ temp

Exceptions:
Reserved Instruction

234 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Rotate Word Right Variable ROTRV
31 26 25 21 20 16 15 11 10 7 6 5 0
SPECIAL R SRLV
rs rt rd 0000 1
000000 000110
6 5 5 5 4 1 6
Format:. ROTRVrd, rt, rs SmartMIPS Crypto

Purpose:

MIPS32 Release 2

To execute a logical right-rotate of a word by a variable number of bits

Description: rd « rt

o (right) rs

The contents of the low-order 32-bit word of GPRare rotated right; the word result is placed in GlRThe

bit-rotate amount is specified by the low-order 5 bits of &R

Restrictions:

Operation:

if ((ArchitectureRevision()
UNPREDICTABLE

endif
S ~ GPR[rs] 4.0
temp ~ GPR[rt] 510

GPR[rd] ~ temp

Exceptions:
Reserved Instruction

< 2) and (Config3

| GPR]r]

3l.s

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

sv= 0)) then

235

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Round to Long Fixed Point ROUND.L.fmt

236

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 ROUND.L

fmt fs fd
010001 00000 001000
6 5 5 5 5 6
Format: ROUND.L.S fd,fs MIPS64
MIPS32 Release 2
ROUND.L.D fd,fs MIPS64
MIPS32 Release 2
Purpose:

To convert an FP value to 64-bit fixed point, rounding to nearest

Description: fd ~ convert_and_round(fs)

The value in FPRs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded to near-
est/even (rounding mode 0). The result is placed inféPR

When the source value is Infinity, NaN, or rounds to an integer outside the ra??ge 23.1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR If the Invalid OperatiorEnablebit is set in theFCSR no result is written tdd and an Invalid Operation

exception is taken immediately. Otherwise, the default re€it12is written tofd.

Restrictions:

The fieldsfs andfd must specify valid FPRds for typefmtandfd for long fixed point; if they are not valid, the result
is UNPREDICTABLE .

The operand must be a value in fornfrat; if it is not, the result i)JNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of this instruction ISINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Round to Long Fixed Point (cont.) ROUND.L.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 237

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Round to Word Fixed Point ROUND.W.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 ROUND.W
fmt fs fd
010001 00000 001100
6 5 5 5 5 6
Format: ROUND.W.S fd, fs MIPS32
ROUND.W.D fd, fs MIPS32

Purpose:

238

To convert an FP value to 32-bit fixed point, rounding to nearest

Description: fd

~ convert_and_round(fs)

The value in FPRs, in formatfmt, is converted to a value in 32-bit word fixed point format rounding to nearest/even
(rounding mode 0). The result is placed in FBR

When the source value is Infinity, NaN, or rounds to an integer outside the ra??ge P11, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR If the Invalid OperatiorEnablebit is set in theFCSR no result is written tdd and an Invalid Operation

exception is taken immediately. Otherwise, the default restt12is written tofd.

Restrictions:

The fieldsfs andfd must specify valid FPRds for typefmtandfd for word fixed point; if they are not valid, the result
is UNPREDICTABLE .

The operand must be a value in fornfrat; if it is not, the result iJJNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Floating Point Round to Word Fixed Point (cont). ROUND.W.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 239

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Reciprocal Square Root Approximation RSQRT.fmt

240

31 26 25 21 20 16 15 11 10 6 5 0

CcoP1 0 RSQRT

fmt fs fd
010001 00000 010110
6 5 5 5 5 6
Format: RSQRT.S fd,fs MIPS64
MIPS32 Release 2
RSQRT.D fd,fs MIPS64
MIPS32 Release 2
Purpose:

To approximate the reciprocal of the square root of an FP value (quickly)

Description: fd « 1.0/ sqrt(fs)

The reciprocal of the positive square root of the value in FFiRapproximated and placed into FRR The operand
and result are values in fornfait

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from both the exact result and the IEEE-mandated
representation of the exact result by no more than two units in the least-significant place (ULP).

The effect of the curremCSRrounding mode on the result is implementation dependent.

Restrictions:

The fieldsfs andfd must specify FPRs valid for operands of tyjpet, if they are not valid, the result NPRE-
DICTABLE .

The operand must be a value in fornfrat; if it is not, the result iJUNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of RSQRT.D iWNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, fmt, 1.0 / SquareRoot(valueFPR(fs, fmt)))

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Reciprocal Square Root Approximation (cont.) RSQRT.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 241

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Byte SB

31 26 25 21 20 16 15 0
SB
base rt offset
101000
6 5 5 16
Format: SB rt, offset(base) MIPS32
Purpose:

To store a byte to memory

Description: memory[base+offset] -t

The least-significant 8-bit byte of GRRis stored in memory at the location specified by the effective address. The
16-bit signedbffsetis added to the contents of GBRseto form the effective address.

Restrictions:

None
Operation:
vAddr ~ sign_extend(offset) + GPR[base]
(pAddr, CCA) AddressTranslation (vAddr, DATA, STORE)
pAddr « PAddr pgize.1.2 |l (PAddr 1.0 Xor ReverseEndian 2)
bytesel < VAddr ; o xor BigEndianCPU 2
dataword — GPRIM] 31 geyteselo 110 EPvtesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

242 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Conditional Word scC

31 26 25 21 20 16 15 0
SC
base rt offset
111000
6 5 5 16
Format: SC rt, offset(base) MIPS32
Purpose:

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[base+offset] —rtrt ~ lelsert <0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPRt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signedffsetis added to the contents of GB&seto form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

» The 32-bit word of GPRt is stored into memory at the location specified by the aligned effective address.
» A1, indicating success, is written into GRR

Otherwise, memory is not modified and a 0, indicating failure, is written intorGPR

If either of the following events occurs between the execution of LL and SC, the SC fails:

» A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation dependent, but it
is at least one word and at most the minimum page size.

* An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

« A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

e The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for
instruction words.)

The following conditions must be true or the result of the SINBREDICTABLE :
» Execution of SC must have been preceded by execution of an LL instruction.

» An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 243

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Conditional Word (cont.) SC

244

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that

is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

» Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of eitikached noncoherewtr cached coherenAll accesses must be to one or
the other access type, and they may not be mixed.

» MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type @dched coherent

/O System: To provide atomic RMW with a coherent 1/0O system, all accesses to the location must be made
with a memory access type ciched coherentf the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the 1/O reads and writes.

Restrictions:

The addressed location must have a memory access tyaeloéd noncoherent cached coherentf it does not, the
result iSUNPREDICTABLE .

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr sign_extend(offset) + GPR[base]
ifvAddr ;o #0 ?then
SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, STORE)
dataword ~ GPRIrt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] 03! || LLbit

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Conditional Word (cont.)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:
LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (TO) # load counter
ADDI T2,T1,1 #increment
SC T2, (TO) # try to store, checking for atomicity
BEQ T2, 0, L1 #if not atomic (0), try again
NOP # branch-delay slot

SC

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-

lation assistance.

LL and SC function on a single processor frached noncoheremhemory so that parallel programs can be run on

uniprocessor systems that do not suppached cohererthemory access types.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

245

Software Debug Breakpoint SDBBP

31 26 25 6 5 0
SPECIAL2 SDBBP
code
011100 111111
6 20 6
Format: SDBBP code EJTAG
Purpose:

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executedthe exception is a Debug Mode Exception, which sets
the Debuggyccogefield to the value 0x9 (Bp). The code field can be used for passing information to the debug

exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If Debug py= 0 then
SignalDebugBreakpointException()

else
SignalDebugModeBreakpointException()

endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

246 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Doubleword from Floating Point SDC1

31 26 25 21 20 16 15 0
SDC1
base ft offset
111101
6 5 5 16
Format: SDCL1 ft, offset(base) MIPS32
Purpose:

To store a doubleword from an FPR to memory

Description: memory[base+offset] < ft

The 64-bit doubleword in FPR is stored in memory at the location specified by the aligned effective address. The
16-bit signedbffsetis added to the contents of GBRseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddiege 0 (not doubleword-aligned).

Operation:

vAddr — sign_extend(offset) + GPR[base]
ifvAddr 5, o #0 3then
SignalException(AddressError)
endif
(pAddr, CCA) — AddressTranslation(vAddr, DATA, STORE)
Isw ~ ValueFPR(ft, UNINTERPRETED_WORD)
msw — ValueFPR(ft+1, UNINTERPRETED_WORD)
paddr ~ paddr xor ((BigEndianCPU xor ReverseEndian) 102)

paddr ~ paddr xor 2#100

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 247

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Doubleword from Coprocessor 2 SDC2
31 26 25 21 20 16 15 0
SDC2
base rt offset
111110
6 5 5 16
Format: SDC2 rt, offset(base) MIPS32

248

Purpose:
To store a doubleword from a Coprocessor 2 register to memory

Description: memory[base+offset] ot

The 64-bit doubleword in Coprocessor 2 registés stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signeffsetis added to the contents of GBRseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddgege 0 (not doubleword-aligned).

Operation:
vAddr — sign_extend(offset) + GPR[base]
if vAddr , o #0 3then
SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation(vAddr, DATA, STORE)
Isw < CPR[2,11,0]
msw ~ CPR[2,rt+1,0]
paddr ~ paddr xor ((BigEndianCPU xor ReverseEndian) IO 2

paddr ~ paddr xor 2#100

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Doubleword Indexed from Floating Point SDXC1

31 26 25 21 20 16 15 11 10 6 5 0
COP1X 0 SDXC1
base index fs
010011 00000 001001
6 5 5 5 5 6
Format: SDXCL1 fs, index(base) MIPS64

MIPS32 Release 2

Purpose:
To store a doubleword from an FPR to memory (GPR+GPR addressing)

Description: memory[base+index] ~ fs

The 64-bit doubleword in FPR is stored in memory at the location specified by the aligned effective address. The
contents of GPdexand GPRaseare added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddgege 0 (not doubleword-aligned).

Operation:

vAddr ~ GPR[base] + GPR[index]
ifvAddr , o #0 3then
SignalException(AddressError)
endif
(pAddr, CCA) — AddressTranslation(vAddr, DATA, STORE)
Isw ~ ValueFPR(ft, UNINTERPRETED_WORD)
msw — ValueFPR(ft+1, UNINTERPRETED_WORD)
paddr ~ paddr xor ((BigEndianCPU xor ReverseEndian) [0 2)

paddr ~ paddr xor 2#100

Exceptions:
TLB REefill, TLB Invalid, TLB Modified, Coprocessor Unusable, Address Error, Reserved Instruction, Watch.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 249

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Sign-Extend Byte SEB

250

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 SEB BSHFL
rt rd
011111 00000 10000 100000
6 5 5 5 5 6
Format: sebrd, rt MIPS32 Release 2
Purpose:

To sign-extend the least significant byte of GPBRnd store the value into GR&

Description: rd — SignExtend(rt 7.)
The least significant byte from GRRis sign-extended and stored in GRR

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] ~sign _extend(GPR[rt] 7.0)
Exceptions:
Reserved Instruction

Programming Notes:

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-equiva-
lent instructions already in the instruction set. The following table shows the instructions providing the equivalent
functions.

Expected Instruction Function Equivalent Instruction
ZEB rx,ry Zero-Extend Byte ANDI rx,ry,0xFF
ZEH rx,ry Zero-Extend Halfword ~ ANDI rx,ry,0xFFFF

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Sign-Extend Halfword SEH

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 SEH BSHFL
rt rd
011111 00000 11000 100000
6 5 5 5 5 6
Format: sehrd, rt MIPS32 Release 2
Purpose:

To sign-extend the least significant halfword of GPBnd store the value into GR&

Description: rd — SignExtend(t 150)
The least significant halfword from GRRis sign-extended and stored in GRR

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] <sign _extend(GPR[rt] 150)
Exceptions:
Reserved Instruction

Programming Notes:

The SEH instruction can be used to convert two contiguous halfwords to sign-extended word values in three instruc-
tions. For example:

Iw t0, O(al) /* Read two contiguous halfwords */
seh t1, t0 /* t1 = lower halfword sign-extended to word */
sra to, t0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended halfwords can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 251

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Sign-Extend Halfword, cont. SEH

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-equiva-
lent instructions already in the instruction set. The following table shows the instructions providing the equivalent

functions.
Expected Instruction Function Equivalent Instruction
ZEB rx,ry Zero-Extend Byte ANDI rx,ry,0xFF
ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,0xFFFF
252 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Halfword

SH
31 26 25 21 20 16 15 0
SH
base rt offset
101001
6 5 5 16
Format: SH rt, offset(base) MIPS32

Purpose:
To store a halfword to memory

Description: memory[base+offset] -t

The least-significant 16-bit halfword of registéiis stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signeffsetis added to the contents of GBRseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[base]

if vAddr ¢ # 0 then
SignalException(AddressError)

endif

(pAddr, CCA) — AddressTranslation (vAddr, DATA, STORE)
pAddr — pAddr pgize.1.o |l (PAddrl 1.0 Xor (ReverseEndian || 0))

bytesel « vAddrl ; o xor (BigEndianCPU || 0)
dataword «— GPR[M] 31 gwpytesel.o IO 8*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

253

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Shift Word Left Logical SLL

254

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SLL
rt rd sa
000000 00000 000000
6 5 5 5 5 6
Format: SLLrd, rt, sa MIPS32
Purpose:

To left-shift a word by a fixed number of bits

Description: rd « rt<<sa

The contents of the low-order 32-bit word of GPRare shifted left, inserting zeros into the emptied bits; the word
result is placed in GPRI. The bit-shift amount is specified bg.

Restrictions:

None

Operation:
s - sa
temp ~ GPR[M] (3150 [0 °
GPR[rd] - temp

Exceptions:

None

Programming Notes:
SLL r0, r0, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL r0, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue break on
superscalar processors.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Shift Word Left Logical Variable SLLV
31 26 25 21 20 16 15 11 10 0
SPECIAL 0 SLLV
rs rt rd
000000 00000 000100
6 5 5 5 5 6
Format: SLLVrd, 1t rs MIPS32

Purpose: To left-shift a word by a variable number of bits

Description: rd

« rn<<rs

The contents of the low-order 32-bit word of GPRare shifted left, inserting zeros into the emptied bits; the result

word is placed in GPRI. The bit-shift amount is specified by the low-order 5 bits of GPR

Restrictions: None

Operation:

s
temp

—~ GPRIrs] 4.0
— GPR[I’t] (31-s)..0

GPR[rd] -~ temp

Exceptions: None

Programming Notes:

None

II0

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

255

Set on Less Than SLT

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SLT
rs rt rd
000000 00000 101010
6 5 5 5 5 6
Format: SLTrd,rs,rt MIPS32
Purpose:

To record the result of a less-than comparison

Description: rd ~ (rs<rt)

Compare the contents of GRRand GPRt as signed integers and record the Boolean result of the comparison in
GPRrd. If GPRrsis less than GPR, the result is 1 (true); otherwise, it is O (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < GPRJrt] then
GPR[rd] <0 GPRLEN-l” 1
else
GPR[rd] -0 GPRLEN
endif
Exceptions:

None

256 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Set on Less Than Immediate SLTI
31 26 25 21 20 16 15 0
SLTI
rs rt immediate
001010
6 5 5 16
Format: SLTI, rs, immediate MIPS32

Purpose:

To record the result of a less-than comparison with a constant

Description: rt

~ (rs < immediate)

Compare the contents of GRRand the 16-bit signeiinmediateas signed integers and record the Boolean result of
the comparison in GPR. If GPRrsis less thaimmediatethe result is 1 (true); otherwise, it is O (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
— 0 GPRLEN-J 1

GPR]rt]
else

GPR]rt]
endif

Exceptions:
None

-0 GPRLEN

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

257

Set on Less Than Immediate Unsigned SLTIU

31 26 25 21 20 16 15 0
SLTIU
rs rt immediate
001011
6 5 5 16
Format: SLTIU rt, rs, immediate MIPS32
Purpose:

To record the result of an unsigned less-than comparison with a constant

Description: rt — (rs < immediate)

Compare the contents of GRRand the sign-extended 16-iitmediateas unsigned integers and record the Boolean
result of the comparison in GRR If GPRrs is less thaimmediatethe result is 1 (true); otherwise, it is 0 (false).

Because the 16-bitnmediates sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:
None

Operation:

if (0 || GPR]rs]) < (0 || sign_extend(immediate)) then
GPR[rt] . 0 CPRIEN-L} I
else
GPR[1t] . 0 GPRLEN
endif
Exceptions:

None

258 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Set on Less Than Unsigned SLTU

31 26 25 21 20 16 15 11 10 0
SPECIAL 0 SLTU
rs rt rd
000000 00000 101011
6 5 5 5 5 6
Format: SLTUrd,rs, rt MIPS32
Purpose:

To record the result of an unsigned less-than comparison

Description: rd

« (rs<rt)

Compare the contents of GRRand GPRt as unsigned integers and record the Boolean result of the comparison in

GPRrd. If GPRrsis less than GPR, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPRIrs]) < (0 || GPRIrt]) then

GPRI[rd]

else

GPR]rd]

endif

Exceptions:

None

-0 GPRLEN

<0 GPRLEN-llI 1

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

259

Floating Point Square Root SQRT.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 SQRT

fmt fs fd
010001 00000 000100
6 5 5 5 5 6
Format: SQRT.Sfd, fs MIPS32
SQRT.D fd, fs MIPS32
Purpose:

To compute the square root of an FP value

Description: fd ~ SQRT(fs)

The square root of the value in FRRIs calculated to infinite precision, rounded according to the current rounding
mode inNFCSR and placed into FPR. The operand and result are values in forfmmt

If the value in FPHSs corresponds to — 0, the result is — 0.

Restrictions:
If the value in FPHSs s less than 0, an Invalid Operation condition is raised.

The fieldsfs andfd must specify FPRs valid for operands of tyfpet; if they are not valid, the result NPRE-
DICTABLE .

The operand must be a value in fornfrat; if it is not, the result iJUNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

Operation:
StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Inexact, Unimplemented Operation

260 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Shift Word Right Arithmetic SRA

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SRA
rt rd sa
000000 00000 000011
6 5 5 5 5 6
Format: SRA rd, rt, sa MIPS32
Purpose:

To execute an arithmetic right-shift of a word by a fixed number of bits

Description:rd « rt>>sa (arithmetic)

The contents of the low-order 32-bit word of GPtRare shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GRR The bit-shift amount is specified bg.

Restrictions:
None

Operation:

s ~ sa
temp « (GPR[M] 3;)°[IGPRIM] 315
GPR[rd] -~ temp

Exceptions: None

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 261

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Shift Word Right Arithmetic Variable SRAV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SRAV
rs rt rd
000000 00000 000111
6 5 5 5 5 6
Format: SRAVrd,rt, rs MIPS32
Purpose:

To execute an arithmetic right-shift of a word by a variable number of bits

Description: rd « rt>>rs (arithmetic)

The contents of the low-order 32-bit word of GPtRare shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GRR The bit-shift amount is specified by the low-order 5 bits of GPR
Restrictions:

None

Operation:

S - GPR[rS] 4.0
temp ~ (GPR[t] 31)°||GPR[M] 31
GPR[rd] -~ temp

Exceptions:
None

262 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Shift Word Right Logical SRL

31 26 25 22 21 20 16 15 11 10 6 5 0
SPECIAL R SRL
0000 0 rt rd sa
000000 000010
6 4 1 5 5 5 6
Format: SRL rd, rt, sa MIPS32
Purpose:

To execute a logical right-shift of a word by a fixed number of bits

Description: rd « rt>>sa (logical)

The contents of the low-order 32-bit word of GIPRare shifted right, inserting zeros into the emptied bits; the word
result is placed in GPRI. The bit-shift amount is specified bg.

Restrictions:

None

Operation:

s < sa
temp — 0% || GPRrt] 315
GPR[rd] -~ temp

Exceptions:
None

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 263

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Shift Word Right Logical Variable SRLV

31 26 25 21 20 16 15 11 10 7 6 5 0
SPECIAL R SRLV
rs rt rd 0000 0
000000 000110
6 5 5 5 4 1 6
Format: SRLVrd,rt, rs MIPS32
Purpose:

To execute a logical right-shift of a word by a variable number of bits

Description:rd « rt>>rs (logical)

The contents of the low-order 32-bit word of GIPRare shifted right, inserting zeros into the emptied bits; the word
result is placed in GPRI. The bit-shift amount is specified by the low-order 5 bits of GPR

Restrictions:

None

Operation:

S - GPR[rS] 4.0
temp — 0% || GPRrt] 3.5
GPR[rd] -~ temp

Exceptions:
None

264 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Superscalar No Operation SSNOP

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 1 SLL
000000 00000 00000 00000 00001 000000
6 5 5 5 5 6
Format. SSNOP MIPS32
Purpose:

Break superscalar issue on a superscalar processor.

Description:

SSNORP is the assembly idiom used to denote superscalar no operation. The actual instruction is interpreted by the
hardware as SLL r0, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instruction to
single-issue. The processor must then end the current instruction issue between the instruction previous to the SSNOP
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On a single-issue processor, this instruction is a NOP that takes an issue slot.

Restrictions:

None

Operation:
None

Exceptions:
None

Programming Notes:

SSNORP is intended for use primarily to allow the programmer control over CPO hazards by converting instructions
into cycles in a superscalar processor. For example, to insert at least two cycles between an MTCO and an ERET, one
would use the following sequence:

mtcO X,y
ssnop
ssnop

eret

Based on the normal issues rules of the processor, the MTCO issues in cycle T. Because the SSNOP instructions must
issue alone, they may issue no earlier than cycle T+1 and cycle T+2, respectively. Finally, the ERET issues no earlier
than cycle T+3. Note that although the instruction after an SSNOP may issue no earlier than the cycle after the
SSNOP is issued, that instruction may issue later. This is because other implementation-dependent issue rules may
apply that prevent an issue in the next cycle. Processors should not introduce any unnecessary delay in issuing
SSNOP instructions.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 265

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Subtract Word SUB

266

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SUB
rs rt rd
000000 00000 100010
6 5 5 5 5 6
Format: SUBd, rs, rt MIPS32
Purpose:

To subtract 32-bit integers. If overflow occurs, then trap

Description:rd « rs-rt

The 32-bit word value in GPR is subtracted from the 32-bit value in GP&to produce a 32-bit result. If the sub-
traction results in 32-bit 2’'s complement arithmetic overflow, then the destination register is not modified and an Inte-
ger Overflow exception occurs. If it does not overflow, the 32-bit result is placed intcdGPR

Restrictions:

None

Operation:

temp — (GPR[rs] 3;]IGPR[rs] 310) —(GPR[t] 3]|IGPR[rt] 330)
iftemp 3, Ztemp 3; then
SignalException(IntegerOverflow)
else
GPR[rd] « temp 31 ¢
endif
Exceptions:

Integer Overflow

Programming Notes:
SUBU performs the same arithmetic operation but does not trap on overflow.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Subtract SUB.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 SUB

fmt ft fs fd
010001 000001
6 5 5 5 5 6

Format: SUB.Sfd, fs, ft MIPS32
SUB.D fd, fs, ft MIPS32
SUB.PS fd, fs, ft MIPS64

MIPS32 Release 2

Purpose:

To subtract FP values

Description: fd ~ fs-ft

The value in FPRt is subtracted from the value in FAR The result is calculated to infinite precision, rounded
according to the current rounding modeR@SR and placed into FPRI. The operands and result are values in for-
mat fmt. SUB.PS subtracts the upper and lower halves of FPdhd FPRft independently, and ORs together any
generated exceptional conditions.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of tyfpet If they are not valid, the result iINPRE-
DICTABLE .

The operands must be values in fornfrat; if they are not, the result i§NPREDICTABLE and the value of the
operand FPRs becom&g®PREDICTABLE .

The result of SUB.PS IINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR (fd, fmt, ValueFPR(fs, fmt) — imt ValueFPR(ft, fmt))

CPU Exceptions:
Coprocessor Unusable, Reserved Instruction

FPU Exceptions:
Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 267

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Subtract Unsigned Word SUBU

268

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SUBU
rs rt rd
000000 00000 100011
6 5 5 5 5 6
Format: SuBUTrd, rs, rt MIPS32
Purpose:

To subtract 32-bit integers

Description:rd « rs-rt

The 32-bit word value in GPR is subtracted from the 32-bit value in GP&Rand the 32-bit arithmetic result is and
placed into GPRd.

No integer overflow exception occurs under any circumstances.
Restrictions:

None

Operation:
temp ~ GPRJrs] - GPRJr]
GPR[rd] temp
Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Doubleword Indexed Unaligned from Floating Point SUXC1

31 26 25 21 20 16 15 11 10 6 5 0
COP1X 0 SUXC1
base index fs
010011 00000 001101
6 5 5 5 5 6
Format: SUXCL1 fs, index(base) MIPS64

MIPS32 Release 2

Purpose:
To store a doubleword from an FPR to memory (GPR+GPR addressing) ignoring alignment

Description: memory[(base+index) pgze1.3 |1 <« fS

The contents of the 64-bit doubleword in FPRs stored at the memory location specified by the effective address.
The contents of GPihdexand GPRbaseare added to form the effective address. The effective address is double-
word-aligned; EffectiveAddressyare ignored.

Restrictions:
The result of this instruction ISNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vAddr ~ (GPR[base]+GPRJindex]) 63.3 |0 3

(pAddr, CCA) — AddressTranslation(vAddr, DATA, STORE)

Isw « ValueFPR(ft, UNINTERPRETED_WORD)

msw « ValueFPR(ft+1, UNINTERPRETED_WORD)

paddr ~ paddr xor ((BigEndianCPU xor ReverseEndian) [0 2)

paddr ~ paddr xor 2#100

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Watch

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 269

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Word SW

31 26 25 21 20 16 15 0
SW
base rt offset
101011
6 5 5 16
Format: SW rt, offset(base) MIPS32
Purpose:

To store a word to memory

Description: memory[base+offset] -t

The least-significant 32-bit word of registeris stored in memory at the location specified by the aligned effective
address. The 16-bit signeffsetis added to the contents of GBRseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[base]
ifvAddr ;o #0 2then
SignalException(AddressError)
endif
(pAddr, CCA) AddressTranslation (vAddr, DATA, STORE)
dataword ~ GPR]rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

270 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Word from Floating Point SWC1

31 26 25 21 20 16 15 0
SWC1
base ft offset
111001
6 5 5 16
Format: SWHCI1 ft, offset(base) MIPS32
Purpose:

To store a word from an FPR to memory

Description: memory[base+offset] < ft

The low 32-bit word from FPR is stored in memory at the location specified by the aligned effective address. The
16-bit signedbffsetis added to the contents of GBRseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddrege O (not word-aligned).

Operation:

vAddr — sign_extend(offset) + GPR[base]
ifvAddr ;o #0 3then

SignalException(AddressError)
endif
(pAddr, CCA) — AddressTranslation(vAddr, DATA, STORE)
dataword ~ ValueFPR(ft, UNINTERPRETED_WORD)
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 271

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Word from Coprocessor 2 SWC?2

272

31 26 25 21 20 16 15 0
SWC2
base rt offset
111010
6 5 5 16
Format: SWC2 , offset(base) MIPS32
Purpose:

To store a word from a COP2 register to memory

Description: memory[base+offset] ot

The low 32-bit word from COP2 (Coprocessor 2) registelis stored in memory at the location specified by the
aligned effective address. The 16-bit sigrdfdetis added to the contents of GRRRseto form the effective address.
Restrictions:

An Address Error exception occurs if EffectiveAddrege 0 (not word-aligned).

Operation:

vAddr — sign_extend(offset) + GPR[base]
ifvAddr , o #0 3then
SignalException(AddressError)
endif
(pAddr, CCA) — AddressTranslation(vAddr, DATA, STORE)
dataword ~ CPRJ[2,rt,0]
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Word Left SWL

31 26 25 21 20 16 15 0

SWL
base rt offset
101010
6 5 5 16

Format: SWL rt, offset(base) MIPS32

Purpose:

To store the most-significant part of a word to an unaligned memory address

Description: memory[base+offset] -t

The 16-bit signeaffsetis added to the contents of GRRseto form an effective addreg&ffAddr). EffAddris the
address of the most-significant of 4 consecutive bytes forming a Wydn memory starting at an arbitrary byte

boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word contaiffigddr The same number of the
most-significant (left) bytes from the word in GRRare stored into these bytes\if

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A p#¥t2bytes, is located in the aligned

word containing the most-significant byte at 2. First, SWL stores the most-significant 2 bytes of the low word from
the source register into these 2 bytes in memory. Next, the complementary SWR stores the remainder of the unaligned

word.

Figure 3-9 Unaligned Word Store Using SWL and SWR

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own add
most — significance — least
lol1]2][3]4|5|6]7]8]|..| Wemory: mitalcontents
GPR 24 | E| A § H
o] 1| E[F] 4] 5] 6] .. |AfterexecutingsWL $24,2($0)
|o] 1] E| F] G| H] 6 .. |Then afteSWR $24,5(30)

[SEN]

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the addres&ddrl..0—and the current byte-ordering mode of the processor
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ordering.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

273

Store Word Left (cont.) SWL

Figure 3-10 Bytes Stored by an SWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 —big-endian 64-bit register
Lili]k]|1] offset (vAddy 9 |A|B|C|D|E|F| G| H]
3 2 1 0 «little-endian most — significance — least
most least 32-bit register| liE F 13 |—|
— significance —

Memory contents after instruction (shaded is unchanged)

byt orderng A9L0 byte ordering
E F G H 0 i] k|E
i|E F G 1 i j|E F
i j|E F 2 i|E F G
i | k|E 3 E F G H

Restrictions:
None

Operation:

vAddr sign_extend(offset) + GPR[base]
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, STORE)
pAddr « pAddr pgize.1.2 || (PAddr 1.0 Xor ReverseEndian 2)
If BigEndianMem = 0 then
pAddr « pAddr pgize.12 110 2
endif
byte — vAddr ; o xor BigEndianCPU 2
dataword — 0248V || GPR[M] 31 54 gebyte
StoreMemory(CCA, byte, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error , Watch

274 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Word Right SWR

31 26 25 21 20 16 15 0
SWR
base rt offset
101110
6 5 5 16
Format: SWR rt, offset(base) MIPS32
Purpose:

To store the least-significant part of a word to an unaligned memory address

Description: memory[base+offset] -t

The 16-bit signeaffsetis added to the contents of GRRseto form an effective addreg&ffAddr). EffAddris the
address of the least-significant of 4 consecutive bytes forming a (WMidydn memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word contaiffigddr The same number of the
least-significant (right) bytes from the word in GRRre stored into these bytes\if

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A pak @fbytes, is contained in the
aligned word containing the least-significant byte at 5. First, SWR stores the least-significant 2 bytes of the low word
from the source register into these 2 bytes in memory. Next, the complementary SWL stores the remainder of the
unaligned word.

Figure 3-11 Unaligned Word Store Using SWR and SWL

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address
least — significance — least

| 0 | 1] 2 | 3| 4 | 5|6 | 7| 8 | | Memory: Initial contents

GPR 24 En

lol1]2]3] G| H| 6| .. |AfterexecuingSWR $24,5(30)

lo| 1| E] F] 6| H| 6] ... |Then afteSWL $24,2($0)

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 275

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Word Right (cont.) SWR

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the addres&ddr1..)—and the current byte-ordering mode of the processor
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ordering.

Figure 3-12 Bytes Stored by SWR Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 < big-endian 64-bit register
Lii]«x]1] offset (vAddr 9 | A|B|C|D|E|F| G| H|
3 2 1 0 « little-endian most — significance — least
most least 32-bit register| [F ': 13 |—|
— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian Little-endian byte

byte ordering vAddry o ordering

Hlj k| 0 E F G H
G H|k | 1 F G HJ |
F G H|I 2 G H|k |
E F G H 3 H k|

Restrictions:
None

Operation:
vAddr sign_extend(offset) + GPR[base]
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, STORE)
pAddr — pAddr pgze.1.2 || (PAddr 10 XorReverseEndian ?)
If BigEndianMem = 0 then
pAddr « pAddr pgize. 110 2
endif
byte < vAddr ; o xor BigEndianCPU 2
dataword « GPRIr] 31 guye [0 &V
StoreMemory(CCA, WORD-byte, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

276 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Store Word Indexed from Floating Point SWXC1

31 26 25 21 20 16 15 11 10 6 5 0
COP1X 0 SWXC1
base index fs
010011 00000 001000
6 5 5 5 5 6
Format: SWXCL1 fs, index(base) MIPS64

MIPS32 Release 2

Purpose:
To store a word from an FPR to memory (GPR+GPR addressing)

Description: memory[base+index] ~ fs

The low 32-bit word from FPRs s stored in memory at the location specified by the aligned effective address. The
contents of GPdexand GPRbaseare added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddrege 0 (not word-aligned).

Operation:

vAddr ~ GPR[base] + GPR[index]
ifvAddr ;o #0 3then

SignalException(AddressError)
endif
(pAddr, CCA) — AddressTranslation(vAddr, DATA, STORE)
dataword ~ ValueFPR(ft, UNINTERPRETED_WORD)
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 277

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Synchronize Shared Memory SYNC

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SYNC
stype
000000 00 0000 0000 0000 0 001111
6 15 5 6
Format: SYNC (stype = 0 implied) MIPS32
Purpose:

To order loads and stores.

Description:
Simple Description:

» SYNC affects onlyuncachedaindcached cohererbads and stores. The loads and stores that occur before the SYNC
must be completed before the loads and stores after the SYNC are allowed to start.

» Loads are completed when the destination register is written. Stores are completed when the stored value is visible to
every other processor in the system.

» SYNC is required, potentially in conjunction with SSNOP, to guarantee that memory reference results are visible
across operating mode changes. For example, a SYNC is required on some implementations on entry to and exit
from Debug Mode to guarantee that memory affects are handled correctly.

Detailed Description:

» When thestypefield has a value of zero, every synchronizable load and store that occurs in the instruction stream
before the SYNC instruction must be globally performed before any synchronizable load or store that occurs after the
SYNC can be performed, with respect to any other processor or coherent I/O module.

* SYNC does not guarantee the order in which instruction fetches are performatydvalues 1-31 are reserved
for future extensions to the architecture. A value of zero will always be defined such that it performs all defined
synchronization operations. Non-zero values may be defined to remove some synchronization operations. As such,
software should never use a non-zero value oftypefield, as this may inadvertently cause future failures if
non-zero values remove synchronization operations.

278 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Synchronize Shared Memory (cont.) SYNC

Terms:

SynchronizableA load or store instruction isynchronizabldf the load or store occurs to a physical location in
shared memory using a virtual location with a memory access type of eittoiachedor cached coherenShared
memoryis memory that can be accessed by more than one processor or by a coherent I/0O system module.

Performed loadA load instruction igperformedwhen the value returned by the load has been determined. The result

of a load on processor A has bedeterminedvith respect to processor or coherent I/O module B when a subsequent
store to the location by B cannot affect the value returned by the load. The store by B must use the same memory
access type as the load.

Performed storeA store instruction igperformedwhen the store is observable. A store on processorobéervable
with respect to processor or coherent I/O module B when a subsequent load of the location by B returns the value
written by the store. The load by B must use the same memory access type as the store.

Globally performed loadA load instruction igylobally performedvhen it is performed with respect to all processors
and coherent I/0O modules capable of storing to the location.

Globally performed storeA store instruction igglobally performedwhen it is globally observable. It iglobally
observablavhen it is observable by all processors and I/O modules capable of loading from the location.

Coherent 1/0 moduleA coherent I/O modulés an Input/Output system component that performs coherent Direct
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loads and
stores to locations with a memory access typsaohed coherent

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 279

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Synchronize Shared Memory (cont.) SYNC

280

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types otherdhemedandcached
coherentis UNPREDICTABLE .

Operation:
SyncOperation(stype)

Exceptions:
None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the same mem-
ory access type occur in the instruction stream; this is knowrogsam order

A parallel programhas multiple instruction streams that can execute simultaneously on different processors. In mul-
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other processors—the
global orderof the loads and store—determines the actions necessary to reliably share data in parallel programs.

When all processors observe the effects of loads and stores in program order, the sgstamlisorderedOn such
systems, parallel programs can reliably share data without explicit actions in the programs. For such a system, SYNC
has the same effect as a NOP. Executing SYNC on such a system is not necessary, but neither is it an error.

If a multiprocessor system is not strongly ordered, the effects of load and store instructions executed by one processor
may be observed out of program order by other processors. On such systems, parallel programs must take explicit
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instruction
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on the proces-
sor into two groups, and the effect of all loads and stores in one group is seen by all processors before the effect of
any load or store in the subsequent group. In effect, SYNC causes the system to be strongly ordered for the executing
processor at the instant that the SYNC is executed.

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as strongly

ordered for at least one memory access type. The MIPS architecture also permits implementation of MP systems that

are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel program that

does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program that does
use SYNC works on both types of systems. (System-specific documentation describes the actions needed to reliably
share data in parallel programs for that system.)

The behavior of a load or store using one memory access typBRREDICTABLE if a load or store was previ-
ously made to the same physical location using a different memory access type. The presence of a SYNC between the
references does not alter this behavior.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Synchronize Shared Memory (cont.) SYNC

SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not gener-
ally affect the physical memory-system ordering or synchronization issues that arise in system programming. The
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers, is not
defined. The effect of SYNC on reads or writes to memory caused by privileged implementation-specific instruc-
tions, such as CACHE, also is not defined.

Processor A (writer)
Conditions at entry:
The value 0 has been stored in FLAG and that value is observable by B

SW R1, DATA # change shared DATA value
LI R2,1
SYNC # Perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid
Processor B (reader)
LI R2,1
1. LW R1, FLAG # Get FLAG
BNE R2, R1, 1B# if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA read
LW R1, DATA # Read (valid) shared DATA value

Prefetch operations have no effect detectable by User-mode programs, so ordering the effects of prefetch operations
is not meaningful.

The code fragments above shows how SYNC can be used to coordinate the use of shared data between separate writer
and reader instruction streams in a multiprocessor environment. The FLAG location is used by the instruction streams
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the store of
DATA to be performed globally before the store to FLAG is performed. The SYNC executed by processor B ensures
that DATA is not read until after the FLAG value indicates that the shared data is valid.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 281

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Synchronize Caches to Make Instruction Writes Effective SYNCI

282

31 26 25 21 20 16 15 0
REGIMM SYNCI
base offset
000001 11111
6 5 5 16
Format: SYNCI offset(base) MIPS32 Release 2
Purpose:

To synchronize all caches to make instruction writes effective.

Description:

This instruction is used after a new instruction stream is written to make the new instructions effective relative to an
instruction fetch, when used in conjunction with the SYNC and JALR.HB, JR.HB, or ERET instructions, as
described below. Unlike the CACHE instruction, the SYNCI instruction is available in all operating modes in an
implementation of Release 2 of the architecture.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used to address the cache line in all caches which may need to be synchronized with the write of
the new instructions. The operation occurs only on the cache line which may contain the effective address. One
SYNCI instruction is required for every cache line that was written. See the Programming Notes below.

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur as a byproduct of this instruc-
tion. This instruction never causes TLB Modified exceptions nor TLB Refill exceptions with a cause code of TLBS.

A Cache Error exception may occur as a byproduct of this instruction. For example, if a writeback operation detects a
cache or bus error during the processing of the operation, that error is reported via a Cache Error exception. Similarly,
a Bus Error Exception may occur if a bus operation invoked by this instruction is terminated in an error.

An Address Error Exception (with cause code equal ADEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a SYNCI instruction whose address matches the
Watch register address match conditions.
Restrictions:

The operation of the processoriBNPREDICTABLE if the effective address references any instruction cache line
that contains instructions to be executed between the SYNCI and the subsequent JALR.HB, JR.HB, or ERET instruc-
tion required to clear the instruction hazard.

The SYNCI instruction has no effect on cache lines that were prevsiously locked with the CACHE instruction. If cor-
rect software operation depends on the state of a locked line, the CACHE instruction must be used to synchronize the
caches.

The SYNCI instruction acts only on the current processor. It doesn't not affect the caches on other processors in a
multi-processor system, except as required to perform the operation on the current processor (as might be the case if
multiple processors share an L2 or L3 cache).

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Synchronize Caches to Make Instruction Writes Effective, cont. SYNCI

Operation:

vaddr ~ GPR[base] + sign_extend(offset)
SynchronizeCachelLines(vaddr)/* Operate on all caches */

Exceptions:

Reserved Instruction Exception (Release 1 implementations only)
TLB Refill Exception

TLB Invalid Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 283

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Synchronize Caches to Make Instruction Writes Effective, cont. SYNCI

Programming Notes:

When the instruction stream is written, the SYNCI instruction should be used in conjunction with other instructions
to make the newly-written instructions effective. The following example shows a routine which can be called after
the new instruction stream is written to make those changes effective. Note that the SYNCI instruction could be
replaced with the corresponding sequence of CACHE instructions (when access to Coprocessor 0 is available), and
that the JR.HB instruction could be replaced with JALR.HB, ERET, or DERET instructions, as appropriate.

/*
* This routine makes changes to the instruction stream effective to the
* hardware. It should be called after the instruction stream is written.

* On return, the new instructions are effective.
*

* Inputs:
* a0 = Start address of new instruction stream
* al = Size, in bytes, of new instruction stream
*/
addu al, a0, al /* Calculate end address + 1 */

rdhwr vO, HW _SYNCI_Step /* Get step size for SYNCI from new */
/* Release 2 instruction */

beq v0, zero, 20f /* If no caches require synchronization, */
nop /* branch around */

10:synci 0(a0) [* Synchronize all caches around address */
sltu vl a0, al /* Compare current with end address */
bne vl, zero, 10b /* Branch if more to do */
addu a0, a0, vO /* Add step size in delay slot */
sync /* Clear memory hazards */

20:jr.hb ra [* Return, clearing instruction hazards */
nop

284 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

System Call SYSCALL

31 26 25 6 5 0
SPECIAL SYSCALL
code
000000 001100
6 20 6
Format: SYSCALL MIPS32
Purpose:

To cause a System Call exception

Description:
A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The codefield is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory word containing the instruction.

Restrictions:

None

Operation:
SignalException(SystemCall)

Exceptions:
System Call

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 285

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Trap if Equal TEQ
31 26 25 21 20 16 15 0
SPECIAL TEQ
rs rt code
000000 110100
6 5 5 10 6
Format: TEQrs, 1t MIPS32

286

Purpose:

To compare GPRs and do a conditional trap

Description: if rs = rt then Trap

Compare the contents of GRRand GPRtt as signed integers; if GPR is equal to GPRt, then take a Trap excep-

tion.

The contents of theodefield are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] = GPRJrt] then
SignalException(Trap)

endif

Exceptions:
Trap

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Trap if Equal Immediate TEQI

31 26 25 21 20 16 15 0
REGIMM TEQI
rs immediate
000001 01100
6 5 5 16
Format: TEQI rs, immediate MIPS32
Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs = immediate then Trap

Compare the contents of GRRand the 16-bit signesinmediateas signed integers; if GPR is equal tammediate,
then take a Trap exception.

Restrictions:

None
Operation:
if GPR[rs] = sign_extend(immediate) then
SignalException(Trap)
endif
Exceptions:
Trap
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 287

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Trap if Greater or Equal TGE
31 26 25 21 20 16 15 0
SPECIAL TGE
rs rt code
000000 110000
6 5 5 10 6
Format: TGErs, rt MIPS32

288

Purpose:

To compare GPRs and do a conditional trap

Description: if rs > rt then Trap

Compare the contents of GRRand GPRt as signed integers; if GPR is greater than or equal to GRR then take
a Trap exception.

The contents of theodefield are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs]

= GPR[rt] then

SignalException(Trap)

endif

Exceptions:
Trap

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Trap if Greater or Equal Immediate TGEI

31 26 25 21 20 16 15 0
REGIMM TGEI
rs immediate
000001 01000
6 5 5 16
Format: TGEI rs, immediate MIPS32
Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs > immediate then Trap

Compare the contents of GRRand the 16-bit signeiinmediateas signed integers; if GPR is greater than or equal
to immediatethen take a Trap exception.

Restrictions:

None
Operation:
if GPR[rs] > sign_extend(immediate) then
SignalException(Trap)
endif
Exceptions:
Trap
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 289

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Trap if Greater or Equal Immediate Unsigned TGEIU

290

31 26 25 21 20 16 15 0
REGIMM TGEIU
rs immediate
000001 01001
6 5 5 16
Format: TGEIU rs, immediate MIPS32
Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs > immediate then Trap

Compare the contents of GRRand the 16-bit sign-extendeéchmediateas unsigned integers; if GRR is greater
than or equal ttmmediatethen take a Trap exception.

Because the 16-bitnmediates sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None
Operation:
if (0 || GPR[rs]) > (0 || sign_extend(immediate)) then
SignalException(Trap)
endif
Exceptions:
Trap

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Trap if Greater or Equal Unsigned TGEU

31 26 25 21 20 16 15 6 5 0
SPECIAL TGEU
rs rt code
000000 110001
6 5 5 10 6
Format: TGEUrs, 1t MIPS32
Purpose:

To compare GPRs and do a conditional trap

Description: if rs > rtthen Trap

Compare the contents of GRRand GPRt as unsigned integers; if GRRis greater than or equal to GRR then
take a Trap exception.

The contents of theodefield are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None
Operation:
if (0 || GPR]rs]) > (0 || GPRIrt]) then
SignalException(Trap)
endif
Exceptions:
Trap
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 291

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

292

Probe TLB for Matching Entry TLBP
31 26 25 24 0
COPO CO 0 TLBP
010000 1 000 0000 0000 0000 0000 001000
6 1 19 6

Format: TLBP MIPS32

Purpose:
To find a matching entry in the TLB.

Description:

TheIndexregister is loaded with the address of the TLB entry whose contents match the contentSrmify# reg-

ister. If no TLB entry matches, the high-order bit of tlrelexregister is set. In Release 1 of the Architecture, it is
implementation dependent whether multiple TLB matches are detected on a TLBP. However, implementations are
strongly encouraged to report multiple TLB matches only on a TLB write. In Release 2 of the Architecture, multiple

TLB matches may only be reported on a TLB write.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:
Index «~ 1]| UNPREDICTABLE!
foriin 0...TLBEntries-1
if (TLBII] vpnzand not (TLB[] Mask)) =
(EntryHi pn2and not (TLBII] Mask))) and
((TLB[|] G= 1) or (TLB[l] ASID = EntryHl AS”D))then
Index i
endif
endfor
Exceptions:

Coprocessor Unusable
Machine Check

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Read Indexed TLB Entry TLBR

31 26 25 24 6 5 0
COPO CcoO 0 TLBR
010000 1 000 0000 0000 0000 0000 000001
6 1 19 6
Format: TLBR MIPS32
Purpose:

To read an entry from the TLB.

Description:

The EntryHi, EntryLoQ EntryLol, andPageMaskegisters are loaded with the contents of the TLB entry pointed to

by the Index register. In Release 1 of the Architecture, it is implementation dependent whether multiple TLB matches
are detected on a TLBR. However, implementations are strongly encouraged to report multiple TLB matches only on
a TLB write. In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write. Note that
the value written to th&ntryHi, EntryLoQ andEntryLolregisters may be different from that originally written to the

TLB via these registers in that:

e The value returned in the VPN2 field of tEmtryHi register may havethose bits set to zero corresponding to the
one bits in the Mask field of the TLB entry (the least significant bit of VPN2 corresponds to the least significant
bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed after a TLB
entry is written and then read.

e The value returned in the PFN field of taetryLoOandEntryLolregisters may havethose bits set to zero
corresponding to the one bits in the Mask field of the TLB entry (the least significant bit of PFN corresponds to
the least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or
zeroed after a TLB entry is written and then read.

e The value returned in the G bit in both thetryLoOandEntryLolregisters comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G biEninyLoOandEntryLolwhen
the TLB was written.

Restrictions:

The operation i&JNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 293

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Read Indexed TLB Entry TLBR

294

Operation:

i < Index
if i > (TLBEntries - 1) then
UNDEFINED

endif

PageMaskpask = TLB[] mask

EntryHi ~
(TLB[i] vpn2and not TLBJi] mask) || # Masking implementation dependent
0% || TLBIl asip

EntryLol 02|
(TLB[i] pgnyand not TLB[i] Mask) || # Masking mplementation dependent
TLB[i] 1|l TLB[] o Il TLB] vi || TLBIi] G

EntryLo0 0 2|
(TLB[i] pgnoand not TLBI[i] Mask) || # Masking mplementation dependent
TLB[] coll TLBI] po |l TLB[] vo || TLBIi] G

Exceptions:
Coprocessor Unusable
Machine Check

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Write Indexed TLB Entry TLBWI

31 26 25 24 6 5 0
COPO CcO 0 TLBWI
010000 1 000 0000 0000 0000 0000 000010
6 1 19 6
Format: TLBWI MIPS32
Purpose:

To write a TLB entry indexed by tHedexregister.

Description:

The TLB entry pointed to by the Index register is written from the contents cEttigyHi, EntryLoQ EntryLol, and
PageMaskregisters. It is implementation dependent whether multiple TLB matches are detected on a TLBWI. In
such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB matches
may only be reported on a TLB write. The information written to the TLB entry may be different from that in the
EntryHi, EntryLoQ andEntryLolregisters, in that:

» The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bits in the Mask field of thBageMaskegister (the least significant bit of VPN2 corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
during a TLB write.

» The value written to the PFNO and PFNL1 fields of the TLB entry may have those bits set to zero corresponding to
the one bits in the Mask field BageMaskegister (the least significant bit of PFN corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
during a TLB write.

» The single G bit in the TLB entry is set from the logical AND of the G bits ifttiieyLoOandEntryLol
registers.
Restrictions:

The operation i9JNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 295

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Write Indexed TLB Entry TLBWI

Operation:

i« Index

TLB[i] mask — PageMaskpyask

TLB[i] vpn2 <« EntryHi ypno and not PageMask 4k # Implementation dependent
TLB[] asip ~ EntryHi asip

TLB[]] g < EntryLol gand EntryLo0 g

TLB[i] pgn1 < EntryLol ppy and not PageMask ook # Implementation dependent
TLB[i] ¢; « EntryLol ¢

TLB[l] p1 « EntryLol p

TLBJi] vi1 « EntryLol

TLB[] prno < EntryLoO ppy and not PageMask 4sk # Implementation dependent
TLB[i] o < EntryLo0 ¢

TLB[i] pg « EntryLo0 p

TLB[i] vo < EntryLoO

Exceptions:
Coprocessor Unusable
Machine Check

296 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Write Random TLB Entry

TLBWR

31 26 25 24
COPO CcO 0 TLBWR
010000 1 000 0000 0000 0000 0000 000110
6 19 6
Format: TLBWR MIPS32

Purpose:

To write a TLB entry indexed by tiiRandonregister.

Description:

The TLB entry pointed to by thRandonregister is written from the contents of thmtryHi, EntryLoQ EntryLo],

andPageMaskegisters. It is implementation dependent whether multiple TLB matches are detected on a TLBWR.
In such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB matches
may only be reported on a TLB write. The information written to the TLB entry may be different from that in the

EntryHi, EntryLoQ andEntryLolregisters, in that:

» The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one

bits in the Mask field of thBageMaskegister (the least significant bit of VPN2 corresponds to the least

significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
during a TLB write.

» The value written to the PFNO and PFNL1 fields of the TLB entry may have those bits set to zero corresponding to

the one bits in the Mask field BageMaskegister (the least significant bit of PFN corresponds to the least

significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
during a TLB write.

e The single G bit in the TLB entry is set from the logical AND of the G bits ifttiieyLoOandEntryLol

registers.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

297

Write Random TLB Entry TLBWR

Operation:

i « Random

TLB[] mask — PageMaskyask

TLB[i] vypn2 < EntryHi pno and not PageMask 4k # Implementation dependent
TLB[i] asip ~ EntryHi asp

TLB[]] g < EntryLol gand EntryLo0 g

TLB[] ppny < EntryLol ppy and not PageMask — \aqk # Implementation dependent
TLB[i] ¢; < EntryLol ¢

TLB[i] p; < EntryLol p

TLB[l] vi1 « EntryLol

TLB[i] pgno < EntryLoO ppy @nd not PageMask — yask # Implementation dependent
TLB[]] o « EntryLo0 ¢

TLB[]] po « EntryLo0

TLB[i] o < EntryLo0

Exceptions:
Coprocessor Unusable
Machine Check

298 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Trap if Less Than TLT
31 26 25 21 20 16 15 0
SPECIAL TLT
rs rt code
000000 110010
6 5 5 10 6
Format: TLTrs, 1t MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs

< rtthen Trap

Compare the contents of GRRand GPRt as signed integers; if GPR is less than GPR, then take a Trap excep-

tion.

The contents of theodefield are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
SignalException(Trap)

endif

Exceptions:
Trap

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

299

Trap if Less Than Immediate TLTI

300

31 26 25 21 20 16 15 0
REGIMM TLTI
rs immediate
000001 01010
6 5 5 16
Format: TLTIrs, immediate MIPS32
Purpose:

To compare a GPR to a constant and do a conditional trap

Description: ifrs < immediate then Trap

Compare the contents of GRRand the 16-bit signetnmediateas signed integers; if GPR is less thanmmediate
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
SignalException(Trap)
endif

Exceptions:
Trap

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Trap if Less Than Immediate Unsigned TLTIU

31 26 25 21 20 16 15 0
REGIMM TLTIU
rs immediate
000001 01011
6 5 5 16
Format: TLTIU rs, immediate MIPS32
Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs < immediate then Trap

Compare the contents of GRRand the 16-bit sign-extendesimediateas unsigned integers; if GRR s less than
immediate then take a Trap exception.

Because the 16-hitnmediatéas sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR]rs]) < (0 || sign_extend(immediate)) then
SignalException(Trap)
endif

Exceptions:

Trap

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 301

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Trap if Less Than Unsigned TLTU
31 26 25 21 20 16 15 0
SPECIAL TLTU
rs rt code
000000 110011
6 5 5 10 6
Format: TLTUrs, 1t MIPS32

302

Purpose:

To compare GPRs and do a conditional trap

Description: if rs

<rtthen Trap

Compare the contents of GRRand GPRt as unsigned integers; if GRR is less than GPR, then take a Trap

exception.

The contents of theodefield are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPRIrs]) < (0 || GPRrt]) then

SignalException(Trap)

endif

Exceptions:
Trap

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Trap if Not Equal TNE
31 26 25 21 20 16 15 0
SPECIAL TNE
rs rt code
000000 110110
6 5 5 10 6
Format: TNErs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: i frs

rt then Trap

Compare the contents of GRRand GPRt as signed integers; if GPR is not equal to GPR, then take a Trap

exception.

The contents of theodefield are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs]
SignalException(Trap)

endif

Exceptions:
Trap

GPR]rt] then

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

303

Trap if Not Equal Immediate TNEI

304

31 26 25 21 20 16 15 0
REGIMM TNEI
rs immediate
000001 01110
6 5 5 16
Format: TNEI rs, immediate MIPS32
Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs # immediate then Trap

Compare the contents of GRRand the 16-bit signestmmediateas signed integers; if GPR is not equal tamme-
diate then take a Trap exception.

Restrictions:

None
Operation:
if GPR[rs] # sign_extend(immediate) then
SignalException(Trap)
endif
Exceptions:
Trap

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Truncate to Long Fixed Point TRUNC.L.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 TRUNC.L

fmt fs fd
010001 00000 001001
6 5 5 5 5 6

Format: TRUNC.L.Sfd,fs MIPS64
MIPS32 Release 2
TRUNC.L.D fd, fs MIPS64

MIPS32 Release 2

Purpose:
To convert an FP value to 64-bit fixed point, rounding toward zero

Description: fd ~ convert_and_round(fs)

The value in FPRs, in formatfmt, is converted to a value in 64-bit long fixed point format and rounded toward zero
(rounding mode 1). The result is placed in FBR

When the source value is Infinity, NaN, or rounds to an integer outside the ra??ge 23.1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR If the Invalid OperatiorEnablebit is set in theFCSR no result is written tdd and an Invalid Operation

exception is taken immediately. Otherwise, the default re€dit. 4s written tofd.

Restrictions:

The fieldsfs andfd must specify valid FPRds for typefmtandfd for long fixed point; if they are not valid, the result
is UNPREDICTABLE .

The operand must be a value in fornfrat; if it is not, the result i)JNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

The result of this instruction ISINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 305

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Truncate to Long Fixed Point (cont.) TRUNC.L.fmt
Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Overflow, Inexact

306 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Truncate to Word Fixed Point TRUNC.W.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 TRUNC.W

fmt fs fd
010001 00000 001101
6 5 5 5 5 6
Format: TRUNC.W.Sfd, fs MIPS32
TRUNC.W.D fd, fs MIPS32
Purpose:

To convert an FP value to 32-bit fixed point, rounding toward zero

Description: fd ~ convert_and_round(fs)

The value in FPRs, in formatfmt, is converted to a value in 32-bit word fixed point format using rounding toward
zero (rounding mode 1). The result is placed in FPR

When the source value is Infinity, NaN, or rounds to an integer outside the ra??ge P11, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR If the Invalid OperatiorEnablebit is set in theFCSR no result is written tdd and an Invalid Operation

exception is taken immediately. Otherwise, the default restt12is written tofd.

Restrictions:

The fieldsfs andfd must specify valid FPRds for typefmtandfd for word fixed point; if they are not valid, the result
is UNPREDICTABLE .

The operand must be a value in fornfrat; if it is not, the result iJJNPREDICTABLE and the value of the operand
FPR becomesINPREDICTABLE .

Operation:
StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 307

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Floating Point Truncate to Word Fixed Point (cont.) TRUNC.W.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Overflow, Unimplemented Operation

308 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Enter Standby Mode WAIT

31 26 25 24 6 5 0
COPO CcoO WAIT
Implementation-Dependent Code
010000 1 100000
6 1 19 6
Format: WAIT MIPS32
Purpose:

Wait for Event

Description:

The WAIT instruction performs an implementation-dependent operation, usually involving a lower power mode.
Software may use bits 24:6 of the instruction to communicate additional information to the processor, and the proces-
sor may use this information as control for the lower power mode. A value of zero for bits 24:6 is the default and must
be valid in all implementations.

The WAIT instruction is typically implemented by stalling the pipeline at the completion of the instruction and enter-

ing a lower power mode. The pipeline is restarted when an external event, such as an interrupt or external request
occurs, and execution continues with the instruction following the WAIT instruction. It is implementation-dependent
whether the pipeline restarts when a non-enabled interrupt is requested. In this case, software must poll for the cause
of the restart.The assertion of any reset or NMI must restart the pipeline and the corresponding exception must be
taken.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).
Restrictions:

The operation of the processorUlNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 309

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Enter Standby Mode (cont.) WAIT

Operation:

I: Enter implementation dependent lower power mode
1+1:/* Potential interrupt taken here */

Exceptions:
Coprocessor Unusable Exception

310 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Write to GPR in Previous Shadow Set WRPGPF

31 26 25 21 20 16 15 11 10 0
COPO WRPGPR rt rd 0
0100 00 01 110 000 0000 0000
6 5 5 5 11
Format:. WRPGPR rd, rt MIPS32 Release 2
Purpose:

To move the contents of a current GPR to a GPR in the previous shadow set.

Description: SGPR[SRSCtl pgg rd] < 1t
The contents of the current GRRis moved to the shadow GPR register specified by SRggtbignifying the pre-
vious shadow set number) artl(specifying the register number within that set).

Restrictions:
In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:
SGPR[SRSCtlpgg rd] « GPRIr]

Exceptions:
Coprocessor Unusable
Reserved Instruction

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 311

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Word Swap Bytes Within Halfwords WSBH

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 WSBH BSHFL
rt rd
011111 00000 00010 100000
6 5 5 5 5 6
Format: wsbh rd, rt MIPS32 Release 2
Purpose:

312

To swap the bytes within each halfword of GRRnd store the value into GR&

Description: rd ~ SwapBytesWithinHalfwords(rt)
Within each halfword of GPR the bytes are swapped, and stored in GPR

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:
GPR[rd] ~GPRI[r] 2316 [IGPR[t] 3124 [IGPRIM] 7o [IGPRIM] 15

Exceptions:
Reserved Instruction

Programming Notes:

The WSBH instruction can be used to convert halfword and word data of one endianness to another endianness. The
endianness of a word value can be converted using the following sequence:

Iw t0, 0(al) /* Read word value */
wsbh 0, tO /* Convert endiannes of the halfwords */
rotr tO, t0, 16 /* Swap the halfwords within the words */

Combined with SEH and SRA, two contiguous halfwords can be loaded from memory, have their endianness con-
verted, and be sign-extended into two word values in four instructions. For example:

Iw t0, 0(al) /* Read two contiguous halfwords */

wsbh t0, tO /* Convert endiannes of the halfwords */

seh t1, t0 /* t1 = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended words can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exclusive OR XOR
31 26 25 21 20 16 15 11 10 0
SPECIAL 0 XOR
rs rt rd
000000 00000 100110
6 5 5 5 5 6
Format: XORd, rs, rt MIPS32
Purpose:

To do a bitwise logical Exclusive OR

Description: rd

« ISXOR Tt

Combine the contents of GRR and GPRt in a bitwise logical Exclusive OR operation and place the result into

GPRrd.

Restrictions:

None

Operation:
GPR][rd]

Exceptions:

None

~ GPR(rs] xor GPRI[rt]

MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

313

Exclusive OR Immediate XORI

314

31 26 25 21 20 16 15 0
XORI
rs rt immediate
001110
6 5 5 16
Format: XORI rt, rs, immediate MIPS32
Purpose:

To do a bitwise logical Exclusive OR with a constant

Description: it rs XOR immediate

Combine the contents of GRRand the 16-bit zero-extendé@dmediaten a bitwise logical Exclusive OR operation
and place the result into GRR

Restrictions:
None

Operation:

GPR[rtf] ~ GPR]rs] xor zero_extend(immediate)

Exceptions:
None

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A

|

Instruction Bit Encodings

A.1 Instruction Encodings and Instruction Classes

Instruction encodings are presented in this section; field names are printed here and throughout thtalmsok in

When encoding an instruction, the primapcodefield is encoded first. Mosipcodevalues completely specify an
instruction that has ammediatevalue or offset.

Opcodevalues that do not specify an instruction instead specify an instruction class. Instructions within a class are
further specified by values in other fields. For instaopepdeREGIMM specifies themmediatenstruction class,
which includes conditional branch and tiapmediateinstructions.

A.2 Instruction Bit Encoding Tables

This section provides various bit encoding tables for the instructions of the MIPS32 ISA.

Figure A-1shows a sample encoding table and the instrudjmodefield this table encodes. Bits 31..29 of ihygcode

field are listed in the leftmost columns of the table. Bits 28..26 afpgbedefield are listed along the topmost rows of

the table. Both decimal and binary values are given, with the first three bits designating the row, and the last three bits
designating the column.

An instruction’s encoding is found at the intersection of a row (bits 31..29) and column (bits 28..26) value. For instance,
theopcodevalue for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Similarly, the
opcodevalue for EX2 is 64 (decimal), or 110100 (binary).

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 315

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings

31

26 25

21 20

16 15

opcode

Is

rt

immediate ‘

/L

bits 28..26

=

Decimal encoding of

6

opcode

16

Binary encoding of
opcode (28..26)

Decimal encoding of
opcode (28..26)

0

bits 31..29

000

001

010

011

100

101

110

4
111

0

000

001

010

011

EX1

100

101

ol h|[WIN|F

110

EX2

111

2.

opcode (31..29)

Binary encoding of
opcode (31..29)

Figure A-1 Sample Bit Encoding Table

TablesA-2 through A-20 describe the encoding used for the MIPS32T&le A-1describes the meaning of the
symbols used in the tables.

316

Table A-1 Symbols Used in the Instruction Encoding Tables

Symbol

Meaning

g

Operation or field codes marked with this symbol are reserved for future use. Executing s
instruction must cause a Reserved Instruction Exception.

uch an

(Also italic field name.) Operation or field codes marked with this symbol denotes a field g
The instruction word must be further decoded by examining additional tables that show valu
another instruction field.

lass.
es for

Operation or field codes marked with this symbol represent a valid encoding for a higher-
MIPS ISA level or a new revision of the Architecture. Executing such an instruction must ca|
Reserved Instruction Exception.

brder
use a

Operation or field codes marked with this symbol represent instructions which were only le
64-bit operations were enabled on implementations of Release 1 of the Architecture. In Rel
of the architecture, operation or field codes marked with this symbol represent instructions
are legal if 64-bit floating point operations are enabled. In other cases, executing such an
instruction must cause a Reserved Instruction Exception (non-coprocessor encodings or
coprocessor instruction encodings for a coprocessor to which access is allowed) or a Copr
Unusable Exception (coprocessor instruction encodings for a coprocessor to which acceg

gal if
ease 2
which

cessor
S IS not

allowed).

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.2 Instruction Bit Encoding Tables

Table A-1 Symbols Used in the Instruction Encoding Tables

Symbol

Meaning

Operation or field codes marked with this symbol are available to licensed MIPS partners
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner
selecting appropriate encodings if requested by the partner. The partner is not required to

with MIPS Technologies when one of these encodings is used. If no instruction is encode|
this value, executing such an instruction must cause a Reserved Instruction Excep&iAL2

encodings or coprocessor instruction encodings for a coprocessor to which access is allg
a Coprocessor Unusable Exception (coprocessor instruction encodings for a coprocessor t
access is not allowed).

To

in
consult
d with

wed) or
b which

Field codes marked with this symbol represent an EJTAG support instruction and implemerjtation

of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encodi
implemented, it must match the instruction encoding as shown in the table.

ng is

Operation or field codes marked with this symbol are reserved for MIPS Application Specific

Extensions. If the ASE is not implemented, executing such an instruction must cause a Re
Instruction Exception.

served

Operation or field codes marked with this symbol are obsolete and will be removed from a future

revision of the MIPS32 ISA. Software should avoid using these operation or field codes.

Operation or field codes marked with this symbol are valid for Release 2 implementations

Of the

architecture. Executing such an instruction in a Release 1 implementation must cause a Re¢served

Instruction Exception.

Table A-2 MIPS32 Encoding of the Opcode Field

opcode bits 28..26
0 1 2 3 4 5 6 7

bits 31.2d 000 001 010 011 100 101 110 111
0| 000 | SPECIALS | REGIMM® J JAL BEQ BNE BLEZ BGTZ
1] 001| ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2| 00| COP03 COP15 | COP285 | COP1¥5 | BEQLe | BNELg | BLEZLg | BGTZL@
3| o011 B B B B SPECIALZS | JALX e £ SPEé%'A'-@
4| 100 LB LH LWL w LBU LHU LWR B

5 | 101 SB SH SWL sw B B SWR CACHE
6| 110 LL LWC1 LWC286 PREF B LDC1L LDC26 B

7| 111 sC swc1 swca * B sbc1 SDC® B

1. In Release 1 of the Architecture, the COP1X opcode was called COP3, and was available as another user-available coprocessor. In
Release 2 of the Architecture, a full 64-bit floating point unit is available with 32-bit CPUs, and the COP1X opcode is reserved for
that purpose on all Release 2 CPUs. 32-bit implementations of Release 1 of the architecture are strongly discouraged from using
this opcode for a user-available coprocessor as doing so will limit the potential for an upgrade path to a 64-bit fldatimg poin

2. Release 2 of the Architecture added the SPECIAL3 opcode. Implementations of Release 1 of the Architecture signaled a Reserved
Instruction Exception for this opcode.

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

317

Appendix A Instruction Bit Encodings

318

Table A-3 MIPS32SPECIAL Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 sLi MOVCI 3 SRLS SRA SLLV * SRLVS SRAV
1| ool JR JALR? MOVZ MOVN SYSCALL BREAK * SYNC
2| o010 MFHI MTHI MFLO MTLO B * B B
3| o011 MULT MULTU DIV DIVU B B B B
4 | 100 ADD ADDU SUB SUBU AND OR XOR NOR
5| 101 * * SLT SLTU B B B B
6 | 110 TGE TGEU TLT TLTU TEQ * TNE *
71111 B * B B B * B B

1. Specific encodings of thé, rd, andsafields are used to distinguish among the SLL, NOP, SSNOP and EHB functions.
2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB

Table A-4 MIPS32REGIMM Encoding of rt Field

rt bits 18..16
0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111
0| 00 BLTZ BGEZ BLTZL @ BGEZL ¢ * * * *
1| o1 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2| 10 BLTZAL BGEZAL | BLTZALL @ | BGEZALL ¢ * * * *
3(11 * * * * * * * SYNCI O
Table A-5 MIPS32SPECIALZ2 Encoding of Function Field
function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 MADD MADDU MUL ¢} MSUB MSUBU ¢ ¢}
1| 001 ¢}] 8 ¢} 8 8 ¢ ¢}
2 | 010 ¢}] 8 ¢} 8 8 ¢ ¢}
3| 011 ¢}] 8 ¢} 8 8 ¢ ¢}
4 | 100 CcLz CLO 8 ¢} B B ¢} ¢}
5| 101 ¢}] 8 ¢} 8 8 ¢ ¢}
6 | 110 ¢}] 8 ¢} 8 8 ¢ ¢}
7| 111 0 0 8 ¢} 8 8 ¢ SDBBPG

Table A-6 MIPS32SPECIAL3! Encoding of Function Field for Release 2 of the Architecture

function bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 EXTO B B B INSO B B B
1 001 * * * * * * * *
2 010 * * * * * * * *
3 011 * * * * * * * *
4| 100 | BSHFLO3 * * * B * * *
5 101 * * * * * * * *
6 110 * * * * * * * *
7| 111 * * * RDHWR [* * * *

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume I, Revision 2.00

A.2 Instruction Bit Encoding Tables

1. Release 2 of the Architecture added the SPECIAL3 opcode. Implementations of Release 1 of the Architecture signaled a Reserved
Instruction Exception for this opcode and all function field values shown above.

Table A-7 MIPS32MOVCI Encoding of tf Bit

tf bit 16

0 1
MOVF MOVT

Table A-8 MIPS32! SRL Encoding of Shift/Rotate

R bit 21

0 1
SRL ROTR

1. Release 2 of the Architecture added the
ROTR instruction. Implementations
of Release 1 of the Architecture ig-
nored bit 21 and treated the instruc-
tion as an SRL

Table A-9 MIPS32! SRLV Encoding of Shift/Rotate

R bit 6

0 1
SRLV ROTRV

1. Release 2 of the Architecture added the
ROTRV instruction. Implementa-
tions of Release 1 of the Architecture
ignored bit 6 and treated the instruc-
tion as an SRLV

Table A-10 MIPS32BSHFL Encoding of sa Field

sa bits 8..6
0 1 2 3 4 5 6 7
bits 10..9 000 001 010 011 100 101 110 111
0| 00 WSBH
1 01
2| 10 SEB
3 11 SEH

1. The sa field is sparsely decoded to identify the final instructions. Entries in this table with no mnemonic are reserved for future use
by MIPS Technologies and may or may not cause a Reserved Instruction exception.

Table A-11 MIPS32COPOEnNcoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFCO B * * MTCO B *
1 01 * * RDPGPRO | MEMCO! 30 * * WRPGPRO
e cos

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings

1. Release 2 of the Architecture added the MFMCO function, which is further decoded as the DI and El instructions.

Table A-12 MIPS32COPOENcoding of Function Field When rs€£0

function bits 2..0
0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111
0 | 000 * TLBR TLBWI * * * TLBWR *

1| ool TLBP * * * * * * *

2 | 010 * * * * * * * *

3| 011 ERET * * * * * * DERET o
4| 100 WAIT * * * * * * *

5 | 101 * * * * * * * *

6 | 110 * * * * * * * *

7 111 * * * * * * * *

Table A-13 MIPS32COP1Encoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFC1 B CFC1 MFHC10O MTC1 B CTC1 MTHC10O
1| 01 BC16 BC1ANY2e[| BCIANY&eO * * * * *
2| 10 Sd Dd * * W Lo PS8 *
3 11 * * * * * * * *

Table A-14 MIPS32COP1Encoding of Function Field When rsS

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 ADD SuUB MUL DIV SQRT ABS MOV NEG
1| 001| ROUND.LO | TRUNC.LO CEILLO FLOOR.LO | ROUND.W | TRUNC.W CEILW FLOOR.W
2 | 010 * MOVCF& MOVZ MOVN * RECIP O RSQRTO *
3| 011 * * * * RECIP2¢0 | RECIP1led | RSQRT1ed | RSQRT2e[
4 | 100 * CVT.D * * CVT.W CVT.LO CVT.PS] *
5 lol * * * * * * * *
6 | 110 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE
CABS.Fed | CABS.UNeJ | CABS.EQel] [CABS.UEQe| CABS.OLTe]| CABS.ULT 0 [CABS.OLEeJ|CABS.ULEe0
7| 111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
CABS.SFel] |CABS.NGLEe[]] CABS.SEQe[J|CABS.NGLe| CABS.LTe0 |CABS.NGEe[J| CABS.LEe[] |[CABS.NGTe[
320 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.2 Instruction Bit Encoding Tables

Table A-15 MIPS32COP1Encoding of Function Field When rsb

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 ADD SuB MUL DIV SQRT ABS MOV NEG
1| 001| ROUND.LO | TRUNC.LO CEIL.LO FLOOR.LO ROUND.W TRUNC.W CEILW FLOOR.W
2 | 010 * MOVCF& MOvz MOVN * RECIP O RSQRTO *
3| 011 * * * * RECIP2e0 RECIP1e0 RSQRT1eO RSQRT2e0
4 | 100 CVT.S * * * CVT.W CVT.LO * *
5 101 * * * * * * * *
6 | 110 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE
CABS.FeO | CABS.UNel | CABS.EQel [CABS.UEQe[| CABS.OLT e | CABS.ULT eJ | CABS.OLEeJ| CABS.ULEe[
7| 111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
CABS.SFe[l |CABS.NGLEe[JCABS.SEQel]|CABS.NGLell| CABS.LTed |CABS.NGEeJ| CABS.LEe[] |CABS.NGTell
Table A-16 MIPS32COP1Encoding of Function Field When rs3V or Lt
function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 000 * * * * * * * *
1 001 * * * * * * * *
2 010 * * * * * * * *
3 011 * * * * * * * *
4 | 100 CVT.S CVT.D * * * * CVT.PS.PWeO *
5 101 * * * * * * * *
6 110 * * * * * * * *
7 | 111 * * * * * * * *
1. Format type L is legal only if 64-bit floating point operations are enabled.
Table A-17 MIPS64COP1Encoding of Function Field When rs=rs*
function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 ADDO SuBU MUL O * * ABS [MOV O NEG U
1| oo1 * * * * * * * *
2 | 010 * MOVCF&O MOVzZ O MOVN O * * * *
3| 011 ADDRel * MULR e0J * RECIP2¢el] RECIP1eld RSQRT1ed RSQRT2e]
4 | 100 | CVT.S.PU] * * * CVT.PW.PS elJ * * *
5] 101 | CVT.S.PLO * * * PLL.PS O PLU.PSO PUL.PSO PUU.PS
6 | 110 C.FO C.UNU C.EQU C.UEQO c.oLT c.uLTtQ C.OLEO C.ULEO
CABS.Fell | CABS.UNell [CABS.EQel] |[CABS.UEQeJ| CABS.OLT e[| CABS.ULT [0 | CABS.OLEeJ [CABS.ULEe0]
7| 111 C.SFO C.NGLEDO C.SEQU C.NGLO C.LTQd C.NGED C.LEO C.NGTO
CABS.SFel] |CABS.NGLEJ|CABS.SEQe [CABS.NGLelD| CABS.LT e[|CABS.NGEe[l| CABS.LEe[0 [CABS.NGTel

1. Format type PS is legal only if 64-bit floating point operations are enabled.

Table A-18 MIPS32COP1Encoding of tf Bit When rs=S, D, or PSFunction=MOVCF

tf bit 16
0 1
MOVE.fmt | MOVT.fmt

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings

Table A-19 MIPS32COP2Encoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFC26 B CFC26 MFHC2 60 MTC26 B CTC26 MTHC2 60
1 01 Bcze * * * * * * *
; 12 C2 03

Table A-20 MIPS64COP1XEncoding of Function Field

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 | LwXCiO LDXC1 0 * * * LUXC1 O * *
1| 001| SWXCiO SDXC10 * * * SUXC1 O * PREFXDO
2 | 010 * * * * * * * *
3| 011 * * * * * * ALNV.PS 0O *
4| 100 | MADD.SO | MADD.D O * * * * MADD.PS O *
5| 101 | MSUB.SJ | MSUB.DO * * * * MSUB.PS O *
6 | 110 | NMADD.SO|NMADD.D O * * * * NMADD.PS 0O *
7 | 111 | NMSUB.SJ |[NMSUB.D O * * * * NMSUB.PS O *

1. COP1X instructions are legal only if 64-bit floating point operations are enabled.

A.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section. This information is a tabular
presentation of the encodings described in tables Table A-13 and Table A-20 above.

Table A-21 Floating Point Unit Instruction Format Encodings

fmt field fmt3 field
(bits 25..21 of (bits 2..0 of
COP1 opcode) COP1X opcode)
Decimal Hex Decimal Hex Mnemonic Name Bit Width | Data Type
0.15 00..0F . o Used to encode Coprocessor 1 interface instructions (MFC1,
" " CTC1, etc.). Not used for format encoding.
16 10 0 0 s Single 32 Floating
9 Point
17 11 1 1 D Double 64 Floating
Point
18..19 12..13 2.3 2.3 Reserved for future use by the architecture.
20 14 4 4 w Word 32 Fixed Point
21 15 5 5 L Long 64 Fixed Point
Paired Floating
22 16 6 6 PS Single 2x32 Point
23 17 7 7 Reserved for future use by the architecture.
322 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.3 Floating Point Unit Instruction Format Encodings

Table A-21 Floating Point Unit Instruction Format Encodings

fmt field
(bits 25..21 of
COP1 opcode)

fmt3 field
(bits 2..0 of
COP1X opcode)

Decimal

Hex

Decimal Hex

Mnemonic

Name

Bit Width

Data Type

24.31

18..1F

Reserved for future use by the architecture. Not available

fmt3encoding.

MIPS32™ Architecture For Programmers Volume Il, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

for

323

Appendix A Instruction Bit Encodings

324 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix B

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change bars
on figure titles are used to denote a potential change in the figure itself.

Revision Date Description
0.90 November 1, 2000 Internal review copy of reorganized and updated architecture documentation.
0.91 November 15, 2000 External review copy of reorganized and updated architecture documentation.

Changes in this revision:

0.92 December 15, 2000° Correct sign in description of MSUBU.
» Update JR and JALR instructions to reflect the changes required by
MIPS16.
0.95 March 12, 2001 Update for second external review release.

Updated based on feedback from all reviews.

» Add missing optional select field syntax in mtcO/mfcO instruction
descriptions.

» Correct the PREF instruction description to acknowledge that the
PrepareForStore function does, in fact, modify architectural state.

» To provide additional flexibility for Coprocessor 2 implementations, extend
theselfield for DMFCO, DMTCO, MFCO, and MTCO to be 8 bits.

» Update the PREF instruction to note that it may not update the state of a
locked cache line.

* Remove obviously incorrect documentation in DIV and DIVU with regard
to putting smaller numbers in registéer

* Fix the description for MFC2 to reflect data movement from the
coprocessor 2 register to the GPR, rather than the other way around.

1.00 August 29, 2002 -+ Correct the pseudo code for LDC1, LDC2, SDC1, and SDC2 for a MIPS32
implementation to show the required word swapping.

* Indicate that the operation of the CACHE instruction is UNPREDICTABLE
if the cache line containing the instruction is the target of an invalidate or
writeback invalidate.

* Indicate that an Index Load Tag or Index Store Tag operation of the
CACHE instruction must not cause a cache error exception.

» Make the entire right half of the MFC2, MTC2, CFC2, CTC2, DMFC2, and
DMTC?2 instructions implementation dependent, thereby acknowledging
that these fields can be used in any way by a Coprocessor 2 implementation.

» Clean up the definitions of LL, SC, LLD, and SCD.

» Add a warning that software should not use non-zero values of the stype
field of the SYNC instruction.

» Update the compatibility and subsetting rules to capture the current
requirements.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 325

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix B Revision History

Revision Date Description

Merge the MIPS Architecture Release 2 changes in for the first release of a
Relesae 2 processor. Changes in this revision include:

» All new Release 2 instructions have been included: DI, EHB, El, EXT, INS,
JALR.HB, JR.HB, MFHC1, MFHC2, MTHC1, MTHC2, RDHWR,
RDPGPR, ROTR, ROTRYV, SEB, SEH, SYNCI, WRPGPR, WSBH.

» The following instruction definitions changed to reflect Release 2 of the
Architecture: DERET, ERET, JAL, JALR, JR, SRL, SRLV
1.90 September 1, 2002
» With support for 64-bit FPUs on 32-bit CPUs in Release 2, all floating point
instructions that were previously implemented by MIPS64 processors have
been modified to reflect support on either MIPS32 or MIPS64 processors in
Release 2.

 All pseudo-code functions have been udpated, and the
Are64bitFPOperationsEnabled function was added.

» Update the instruction encoding tables for Release 2.

Continue with updates to merge Release 2 changes into the document. Changes
in this revision include:

» Correct the target GPR (from rd to rt) in the SLTI and SLTIU instructions.
This appears to be a day-one bug.

» Correct CPR number, and missing data movement in the pseudocode for the
MTCO instruction.

* Add note to indicate that the CACHE instruction does not take Address
Error Exceptions due to mis-aligned effective addresses.

» Update SRL, ROTR, SRLV, ROTRV, DSRL, DROTR, DSRLYV,
DROTRV, DSRL32, and DROTR32 instructions to reflect a 1-bit, rather

2.00 June 9, 2003 than a 4-bit decode of shift vs. rotate function.

» Add programming note to the PrepareForStore PREF hint to indicate that it
can not be used alone to create a bzero-like operation.

» Add note to the PREF and PREFX instruction indicating that they may
cause Bus Error and Cache Error exceptions, although this is typically
limited to systems with high-reliability requirements.

» Update the SYNCI instruction to indicate that it should not modify the state
of a locked cache line.

« Establish specific rules for when multiple TLB matches can be reported (on
writes only). This makes software handling easier.

326 MIPS32™ Architecture For Programmers Volume I, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

	MIPS32™ Architecture For Programmers Volume II: The MIPS32™ Instruction Set
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	Guide to the Instruction Set
	2.1� Understanding the Instruction Fields
	2.1.1� Instruction Fields
	2.1.2� Instruction Descriptive Name and Mnemonic
	2.1.3� Format Field
	2.1.4� Purpose Field
	2.1.5� Description Field
	2.1.6� Restrictions Field
	2.1.7� Operation Field
	2.1.8� Exceptions Field
	2.1.9� Programming Notes and Implementation Notes Fields

	2.2� Operation Section Notation and Functions
	2.2.1� Instruction Execution Ordering
	2.2.2� Pseudocode Functions
	2.2.2.1� Coprocessor General Register Access Functions
	COP_LW
	COP_LD
	COP_SW
	COP_SD

	2.2.2.2� Load Memory and Store Memory Functions
	AddressTranslation
	LoadMemory
	StoreMemory
	Prefetch

	2.2.2.3� Access Functions for Floating Point Registers
	ValueFPR
	StoreFPR

	2.2.2.4� Miscellaneous Functions
	SyncOperation
	SignalException
	SignalDebugBreakpointException
	SignalDebugModeBreakpointException
	NullifyCurrentInstruction
	CoprocessorOperation
	JumpDelaySlot
	FPConditionCode
	SetFPConditionCode

	2.3� Op and Function Subfield Notation
	2.4� FPU Instructions

	The MIPS32™ Instruction Set
	3.1� Compliance and Subsetting
	3.2� Alphabetical List of Instructions
	ABS.fmt
	ADD
	ADD.fmt
	ADDI
	ADDIU
	ADDU
	ALNV.PS
	AND
	ANDI
	B
	BAL
	BC1F
	BC1FL
	BC1T
	BC1TL
	BC2F
	BC2FL
	BC2T
	BC2TL
	BEQ
	BEQL
	BGEZ
	BGEZAL
	BGEZALL
	BGEZL
	BGTZ
	BGTZL
	BLEZ
	BLEZL
	BLTZ
	BLTZAL
	BLTZALL
	BLTZL
	BNE
	BNEL
	BREAK
	C.cond.fmt
	CACHE
	CEIL.L.fmt
	CEIL.W.fmt
	CFC1
	CFC2
	CLO
	CLZ
	COP2
	CTC1
	CTC2
	CVT.D.fmt
	CVT.L.fmt
	CVT.PS.S
	CVT.S.fmt
	CVT.S.PL
	CVT.S.PU
	CVT.W.fmt
	DERET
	DI
	DIV
	DIV.fmt
	DIVU
	EHB
	EI
	ERET
	EXT
	FLOOR.L.fmt
	FLOOR.W.fmt
	INS
	J
	JAL
	JALR
	JALR.HB
	JR
	JR.HB
	LB
	LBU
	LDC1
	LDC2
	LDXC1
	LH
	LHU
	LL
	LUI
	LUXC1
	LW
	LWC1
	LWC2
	LWL
	LWR
	LWXC1
	MADD
	MADD.fmt
	MADDU
	MFC0
	MFC1
	MFC2
	MFHC1
	MFHC2
	MFHI
	MFLO
	MOV.fmt
	MOVF
	MOVF.fmt
	MOVN
	MOVN.fmt
	MOVT
	MOVT.fmt
	MOVZ
	MOVZ.fmt
	MSUB
	MSUB.fmt
	MSUBU
	MTC0
	MTC1
	MTC2
	MTHC1
	MTHC2
	MTHI
	MTLO
	MUL
	MUL.fmt
	MULT
	MULTU
	NEG.fmt
	NMADD.fmt
	NMSUB.fmt
	NOP
	NOR
	OR
	ORI
	PLL.PS
	PLU.PS
	PREF
	PREFX
	PUL.PS
	PUU.PS
	RDHWR
	RDPGPR
	RECIP.fmt
	ROTR
	ROTRV
	ROUND.L.fmt
	ROUND.W.fmt
	RSQRT.fmt
	SB
	SC
	SDBBP
	SDC1
	SDC2
	SDXC1
	SEB
	SEH
	SH
	SLL
	SLLV
	SLT
	SLTI
	SLTIU
	SLTU
	SQRT.fmt
	SRA
	SRAV
	SRL
	SRLV
	SSNOP
	SUB
	SUB.fmt
	SUBU
	SUXC1
	SW
	SWC1
	SWC2
	SWL
	SWR
	SWXC1
	SYNC
	SYNCI
	SYSCALL
	TEQ
	TEQI
	TGE
	TGEI
	TGEIU
	TGEU
	TLBP
	TLBR
	TLBWI
	TLBWR
	TLT
	TLTI
	TLTIU
	TLTU
	TNE
	TNEI
	TRUNC.L.fmt
	TRUNC.W.fmt
	WAIT
	WRPGPR
	WSBH
	XOR
	XORI

	Instruction Bit Encodings
	A.1� Instruction Encodings and Instruction Classes
	A.2� Instruction Bit Encoding Tables
	A.3� Floating Point Unit Instruction Format Encodings

	Revision History

